概述
几何意义:
正交变换是保持图形形状和大小不变的几何变换,包含旋转,平移,轴对称及上述变换的复合.
正交可以保证向量的长度和两个向量之间的角度不变.
欧几里得空间V的线性变换σ称为正交变换,如果它保持向量内积不变,即对任意的α,β∈V,都有
(σ(α),σ(β))=(α,β)
等价刻画
设σ是n维欧式空间V的一个线性变换,于是下面4个命题等价
1.σ是正交变换
2.σ保持向量长度不变,即对于任意α∈V,丨σ(α)丨=丨α丨
3.如果ε_1,ε_2,...,ε_n是标准正交基,那么σ(ε_1),σ(ε_2),...,σ(ε_n)也是标准正交基
4.σ在任意一组标准正交基下的矩阵是正交矩阵
正交矩阵
定义:n级实矩阵A称为正交矩阵,如果A'A=E.(A'表示A的转置,E是单位矩阵)
分类
设A是n维欧式空间V的一个正交变换σ在一组标准正交基下的矩阵
若丨A丨=1,则称σ为第一类正交变换,
若丨A丨=-1,则称σ为第二类正交变换.
最后
以上就是落寞宝马为你收集整理的正交变换的全部内容,希望文章能够帮你解决正交变换所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复