我是靠谱客的博主 落后香菇,最近开发中收集的这篇文章主要介绍线性二次型规划LQR中二次型期望等于协方差矩阵与Φ乘积的迹,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

线性二次型规划LQR中二次型期望等于迹

在吴恩达LQG问题的笔记中,有公式为:
E [ w t T Φ t + 1 w t ] = T r ( Σ t Φ t + 1 ) w i t h w t ∼ N ( 0 , Σ t ) mathbb{E}[w_t^TPhi_{t+1}w_t]=Tr(Sigma_tPhi_{t+1}) quad with quad w_tsimmathcal{N}(0,Sigma_t) E[wtTΦt+1wt]=Tr(ΣtΦt+1)withwtN(0,Σt)
证明如下:

  • 引入等式: T r ( x x T A ) = T r ( x T A x ) = x T A x Tr(xx^TA)=Tr(x^TAx)=x^TAx Tr(xxTA)=Tr(xTAx)=xTAx
  • 由上述等式
    (1) E [ w t T Φ t + 1 w t ] = E [ T r ( w t w t T Φ t + 1 ) ] = T r ( E [ w t w t T Φ t + 1 ] ) = T r ( E [ w t w t T ] Φ t + 1 ) begin{aligned} mathbb{E}[w_t^TPhi_{t+1}w_t]&=mathbb{E}[Tr(w_tw_t^TPhi_{t+1})]\ &=Tr(mathbb{E}[w_tw_t^TPhi_{t+1}])\ &=Tr(mathbb{E}[w_tw_t^T]Phi_{t+1})tag{1} end{aligned} E[wtTΦt+1wt]=E[Tr(wtwtTΦt+1)]=Tr(E[wtwtTΦt+1])=Tr(E[wtwtT]Φt+1)(1)
    其中 w t = [ w t 1 , w t 2 , ⋯   , w t n ] T w_t=[w_{t_1},w_{t_2},cdots,w_{t_n}]^T wt=[wt1,wt2,,wtn]T,且 E [ w t 1 ] = 0 mathbb{E}[w_{t_1}]=0 E[wt1]=0
    (2) w t w t T = [ w t 1 w t 1 w t 1 w t 2 ⋯ w t 1 w t n w t 2 w t 1 w t 2 w t 2 ⋯ w t 2 w t n ⋮ ⋮ ⋱ ⋮ w t n w t 1 w t n w t 2 ⋯ w t n w t n ] begin{aligned} w_tw_t^T=left[ begin{array}{cccc} w_{t_1}w_{t_1} & w_{t_1}w_{t_2} & cdots & w_{t_1}w_{t_n} \ w_{t_2}w_{t_1} & w_{t_2}w_{t_2} & cdots & w_{t_2}w_{t_n} \ vdots & vdots & ddots & vdots \ w_{t_n}w_{t_1} & w_{t_n}w_{t_2} & cdots & w_{t_n}w_{t_n} end{array} right]tag{2} end{aligned} wtwtT=wt1wt1wt2wt1wtnwt1wt1wt2wt2wt2wtnwt2wt1wtnwt2wtnwtnwtn(2)
    所以有
    (3) E [ w t w t T ] = [ E [ w t i w t j ] ] n × n = [ E [ w t i w t j ] − E [ w t i ] E [ w t j ] ] n × n = [ E [ ( w t i − E [ w t i ] ) ( w t j − E [ w t j ] ) ] ] n × n = [ c o v ( w t i ,   w t j ) ] n × n = Σ t begin{aligned} mathbb{E}[w_tw_t^T]&=[mathbb{E}[w_{t_i}w_{t_j}]]_{ntimes n}\ &=[mathbb{E}[w_{t_i}w_{t_j}]-mathbb{E}[w_{t_i}]mathbb{E}[w_{t_j}]]_{ntimes n}\ &=[mathbb{E}[(w_{t_i}-mathbb{E}[w_{t_i}])(w_{t_j}-mathbb{E}[w_{t_j}])]]_{ntimes n}\ &=[cov(w_{t_i}, w_{t_j})]_{ntimes n}\ &=Sigma_ttag{3} end{aligned} E[wtwtT]=[E[wtiwtj]]n×n=[E[wtiwtj]E[wti]E[wtj]]n×n=[E[(wtiE[wti])(wtjE[wtj])]]n×n=[cov(wti, wtj)]n×n=Σt(3)
  • 将公式(3)带入公式(1)得到 E [ w t T Φ t + 1 w t ] = T r ( Σ t Φ t + 1 ) quadmathbb{E}[w_t^TPhi_{t+1}w_t]=Tr(Sigma_tPhi_{t+1}) E[wtTΦt+1wt]=Tr(ΣtΦt+1)

最后

以上就是落后香菇为你收集整理的线性二次型规划LQR中二次型期望等于协方差矩阵与Φ乘积的迹的全部内容,希望文章能够帮你解决线性二次型规划LQR中二次型期望等于协方差矩阵与Φ乘积的迹所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部