概述
geGray Code是1880年由法国工程师Jean-Maurice-Emlle Baudot发明的一种编码,是一种绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。格雷码属于可靠性编码,是一种错误最小化的编码方式,因为,虽然自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,能使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它在相邻位间转换时,只有一位产生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。由于这种编码相邻的两个码组之间只有一位不同,因而在用于风向的转角位移量-数字量的转换中,当风向的转角位移量发生微小变化(而可能引起数字量发生变化时,格雷码仅改变一位,这样与其它编码同时改变两位或多位的情况相比更为可靠,即可减少出错的可能性。
但格雷码不是权重码,每一位码没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成液位信号,要经过一次码变换,变成自然二进制码,再由上位机读取。解码的方法是用‘0’和采集来的4位格雷码的最高位(第4位)异或,结果保留到4位,再将异或的值和下一位(第3位)相异或,结果保留到3位,再将相异或的值和下一位(第2位)异或,结果保留到2位,依次异或,直到最低位,依次异或转换后的值(二进制数)就是格雷码转换后自然码的值.
异或:异或则是按位“异或”,相同为“0”,相异为“1”。例:
10011000 异或 01100001 结果: 11111001
举例:
如果采集器器采到了格雷码:1010
就要将它变为自然二进制:
0 与第四位 1 进行异或结果为 1
上面结果1与第三位0异或结果为 1
上面结果1与第二位1异或结果为 0
上面结果0与第一位0异或结果为 0
因此最终结果为:1100 这就是二进制码即十进制 12
当然人看时只需对照表1一下子就知道是12
格雷码计数器(Gray counter)是为了在异步时钟域之间传递计数结果而用到的计数器,因为格雷码计数器计数时相邻的数之间只有一个bit发生了变化,例如:000-001-011-010-110-111-101-100。
一般的,普通二进制码与格雷码可以按以下方法互相转换:
二进制码->格雷码(编码):从最右边一位起,依次将每一位与左边一位异或(XOR),作为对应格雷码该位的值,最左边一位不变(相当于左边是0);
格雷码-〉二进制码(解码):从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变).
数学(计算机)描述:
原码:p[0~n];格雷码:c[0~n](n∈N);编码:c=G(p);解码:p=F(c);书写时从左向右标号依次减小.
编码:c=p XOR p[i+1](i∈N,0≤i≤n-1),c[n]=p[n];
解码:p[n]=c[n],p=c XOR p[i+1](i∈N,0≤i≤n-1).
所以,在设计格雷码计数器的时候可以使用状态机,给每个码设定一个状态然后用时钟来控制它在状态间转换,这样就完成了我们需要的功能,但是若是状态比较多,如n=6,这时就会有64个状态,显然再用状态机非常不方便,当然理论上是可以的。
用karnaugh化简也是限制在位数比较少的情况。
所以我们需要的是一种通用的计数方式,最笨办法就是设计一个二进制计数器binary counter,通过它来计数,然后利用binary -gray的编码就可以得到对应的格雷码计数器,在如今fpga资源那么充裕的情况下,我们学习这样完全可以了,相信二进制计数器大家都会设计,那么接下来的编码器也不是问题,这样就解决了。
最后
以上就是大方纸鹤为你收集整理的格雷码与二进制码的转换的全部内容,希望文章能够帮你解决格雷码与二进制码的转换所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复