我是靠谱客的博主 无限鞋子,最近开发中收集的这篇文章主要介绍三角网格上高斯曲率和平均曲率,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

ref:https://www.cnblogs.com/eat-too-much/p/12595574.html

https://computergraphics.stackexchange.com/questions/1718/what-is-the-simplest-way-to-compute-principal-curvature-for-a-mesh-triangle
同学的CSDN博客 https://blog.csdn.net/qq_38517015/article/details/105185241

中国科大傅孝明老师的框架:框架下载及配置运行

code

https://github.com/lishaohsuai/digital_geo

/**************************************************
@brief   : 输出弧度制的角度 使用两个向量
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
double MeshAlgorithm::vector3fAngle(vector3d a, vector3d b) {
	double cosTheta = a.dot(b) / (a.norm() * b.norm());
#ifndef debug
	std::cout << "[DEBUG] theta is " << acos(cosTheta) << std::endl;
	std::cout << "[DEBUG] vec a" << a.x << "," << a.y << "," << a.z << std::endl;
	std::cout << "[DEBUG] vec b" << b.x << "," << b.y << "," << b.z << std::endl;
#endif
	return acos(cosTheta);
}


/**************************************************
@brief   : 应用海伦公式计算面积
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
double MeshAlgorithm::areaUseThreePoints(Point3d a, Point3d b, Point3d c) {
	//应用海伦公式   S=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
	double lenA = sqrt(pow(b.x - c.x, 2) + pow(b.y - c.y, 2) + pow(b.z - c.z, 2));// b - c 两点的坐标
	double lenB = sqrt(pow(a.x - c.x, 2) + pow(a.y - c.y, 2) + pow(a.z - c.z, 2));// a - c 两点的坐标
	double lenC = sqrt(pow(b.x - a.x, 2) + pow(b.y - a.y, 2) + pow(b.z - a.z, 2));// a - b 两点的坐标
	double Area = 1.0 / 4.0 * sqrt((lenA + lenB + lenC) * (lenA + lenB - lenC) * (lenA + lenC - lenB) * (lenB + lenC - lenA));
#ifndef debug
	std::cout << "[DEBUG] area " << Area << std::endl;
	std::cout << "[DEBUG] a" << a.x << " " << a.y << " " << a.z << std::endl;
	std::cout << "[DEBUG] b" << b.x << " " << b.y << " " << b.z << std::endl;
	std::cout << "[DEBUG] c" << c.x << " " << c.y << " " << c.z << std::endl;
#endif
	return Area;
}


/**************************************************
@brief   : 计算三角形的面积通过两个向量
@author  : lee
@input   : none
@output  : none
@time    : none
***************************************************/
double MeshAlgorithm::areaUseVector(vector3d a, vector3d b) {
	double area = 0.0;
	area = (a.crossp(b)).norm() * 0.5f;
	return fabs(area) > std::numeric_limits<double>::min() ? area : 1e-8;
}


/**************************************************
@brief   : 通过三个点计算其外接圆的圆心的坐标
           参考 https://www.zhihu.com/question/40422123  李玉昆
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
Point3d MeshAlgorithm::calPointCircumcircle(Point3d a, Point3d b, Point3d c) {

	double a1, b1, c1, d1;
	double a2, b2, c2, d2;
	double a3, b3, c3, d3;

	double x1 = a.x, y1 = a.y, z1 = a.z;
	double x2 = b.x, y2 = b.y, z2 = b.z;
	double x3 = c.x, y3 = c.y, z3 = c.z;

	a1 = (y1*z2 - y2 * z1 - y1 * z3 + y3 * z1 + y2 * z3 - y3 * z2);
	b1 = -(x1*z2 - x2 * z1 - x1 * z3 + x3 * z1 + x2 * z3 - x3 * z2);
	c1 = (x1*y2 - x2 * y1 - x1 * y3 + x3 * y1 + x2 * y3 - x3 * y2);
	d1 = -(x1*y2*z3 - x1 * y3*z2 - x2 * y1*z3 + x2 * y3*z1 + x3 * y1*z2 - x3 * y2*z1);

	a2 = 2 * (x2 - x1);
	b2 = 2 * (y2 - y1);
	c2 = 2 * (z2 - z1);
	d2 = x1 * x1 + y1 * y1 + z1 * z1 - x2 * x2 - y2 * y2 - z2 * z2;

	a3 = 2 * (x3 - x1);
	b3 = 2 * (y3 - y1);
	c3 = 2 * (z3 - z1);
	d3 = x1 * x1 + y1 * y1 + z1 * z1 - x3 * x3 - y3 * y3 - z3 * z3;
	Point3d rlt;
	rlt.x = -(b1*c2*d3 - b1 * c3*d2 - b2 * c1*d3 + b2 * c3*d1 + b3 * c1*d2 - b3 * c2*d1)
		/ (a1*b2*c3 - a1 * b3*c2 - a2 * b1*c3 + a2 * b3*c1 + a3 * b1*c2 - a3 * b2*c1);
	rlt.y = (a1*c2*d3 - a1 * c3*d2 - a2 * c1*d3 + a2 * c3*d1 + a3 * c1*d2 - a3 * c2*d1)
		/ (a1*b2*c3 - a1 * b3*c2 - a2 * b1*c3 + a2 * b3*c1 + a3 * b1*c2 - a3 * b2*c1);
	rlt.z = -(a1*b2*d3 - a1 * b3*d2 - a2 * b1*d3 + a2 * b3*d1 + a3 * b1*d2 - a3 * b2*d1)
		/ (a1*b2*c3 - a1 * b3*c2 - a2 * b1*c3 + a2 * b3*c1 + a3 * b1*c2 - a3 * b2*c1);

	return rlt;
}



/**************************************************
@brief   : 根据外接圆的圆心是否要修正,做合理的修正
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
Point3d MeshAlgorithm::calPointVoronoiMixed(Point3d a, Point3d b, Point3d c) {
	Point3d p = calPointCircumcircle(a, b, c);//计算外接圆的圆心
	if (!isInTriangle(a, b, c, p)) {//不在三角形内部的时候 返回bc的中点
		return { (b.x + c.x) / 2.0, (b.y + c.y) / 2.0, (b.z + c.z) / 2.0 };
	}
	return p;
}

/**************************************************
@brief   : 判断两个向量是否同向
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
bool sameSide(Point3d a, Point3d b, Point3d c, Point3d p) {
	vector3d AB(b.x - a.x, b.y - a.y, b.z - a.z);
	vector3d AC(c.x - a.x, c.y - a.y, c.z - a.z);
	vector3d AP(p.x - a.x, p.y - a.y, p.z - a.z);

	vector3d v1 = AB.crossp(AC);
	vector3d v2 = AB.crossp(AP);

	// v1 and v2 should point to the same direction
	return v1.dot(v2) >= 0;
}

/**************************************************
@brief   : 判断点是否在三角形内  参考链接 https://www.cnblogs.com/graphics/archive/2010/08/05/1793393.html
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
bool MeshAlgorithm::isInTriangle(Point3d a, Point3d b, Point3d c, Point3d p) {
	return sameSide(a, b, c, p) &&
		sameSide(b, c, a, p) &&
		sameSide(c, a, b, p);
}



/**************************************************
@brief   : 计算两个三角形的对标 cotalpha cotbelta
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
void MeshAlgorithm::calCotAlphaCotBeta(Point3d p, Point3d a, Point3d b, Point3d c, double &cotAlpha, double &cotBeta) {
	vector3d AP(p.x - a.x, p.y - a.y, p.z - a.z);
	vector3d AB(b.x - a.x, b.y - a.y, b.z - a.z);
	double cosAlpha = cos(vector3fAngle(AP, AB));
	cotAlpha = cosAlpha / sqrt(1 - cosAlpha * cosAlpha);
	vector3d CP(p.x - c.x, p.y - c.y, p.z - c.z);
	vector3d CB(b.x - c.x, b.y - c.y, b.z - c.z);
	double cosBeta = cos(vector3fAngle(CP, CB));
	cotBeta = cosBeta / sqrt(1 - cosBeta * cosBeta);
}


/**************************************************
@brief   : 颜色映射归一化  
@author  : 王丹丹
@input   : none
@output  : none
@time    : none
**************************************************/
void ImageAlgorithm::normalize(std::vector<double> & val) {
	//找到最大值和最小值,然后映射到[0,1]
	double max = -10000.0, min = 10000.0;
	int n = val.size();
	for (int i = 0; i < n; i++){
		if (val[i] > max) max = val[i];
		if (val[i] < min) min = val[i];
	}
	double t = max - min;
	//需要讨论一下相等的情况
	for (int i = 0; i < n; i++){
		val[i] = (val[i] - min) / t;
	}
}


/**************************************************
@brief   : 映射高斯曲率到 r g b 参照libigl中的相关代码
@author  : 王丹丹
@input   : none
@output  : none
@time    : none
**************************************************/
void ImageAlgorithm::colorMap(double gaussCur, double &r, double &g, double &b)
{
	const double rone = 0.8;
	const double gone = 1.0;
	const double bone = 1.0;
	double  x = gaussCur;
	x = (gaussCur < 0 ? 0 : (x > 1 ? 1 : x));
	//可以简单地理解:红色的曲率最大,蓝色的最小
	if (x < 1. / 8.){
		r = 0;
		g = 0;
		b = bone * (0.5 + (x) / (1. / 8.)*0.5);
	}
	else if (x < 3. / 8.){
		r = 0;
		g = gone * (x - 1. / 8.) / (3. / 8. - 1. / 8.);
		b = bone;
	}
	else if (x < 5. / 8.){
		r = rone * (x - 3. / 8.) / (5. / 8. - 3. / 8.);
		g = gone;
		b = (bone - (x - 3. / 8.) / (5. / 8. - 3. / 8.));
	}
	else if (x < 7. / 8.){
		r = rone;
		g = (gone - (x - 5. / 8.) / (7. / 8. - 5. / 8.));
		b = 0;
	}
	else{
		r = (rone - (x - 7. / 8.) / (1. - 7. / 8.)*0.5);
		g = 0;
		b = 0;
	}
}

=======================================另一个文件========================================================
/**************************************************
@brief   : 计算高斯曲率  参考 https://www.cnblogs.com/VVingerfly/p/4428722.html 中的离散公式
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
void MeshViewerWidget::GaussianCurvatureProcess(void) {
	// 遍历所有点计算每个点的高斯曲率

	//std::ofstream cout("case1.txt");
	std::vector<double> gauss;
	for (Mesh::VertexIter v_it = mesh.vertices_begin(); v_it != mesh.vertices_end(); ++v_it) {
		double value = calGaussianCurvature(v_it);
		gauss.push_back(value);
		//std::cout << "Gaussian " <<  value << std::endl;
	}
	myImageAlgorithm.normalize(gauss);
	int k = 0;
	for (auto v_it = mesh.vertices_begin(); v_it != mesh.vertices_end(); ++v_it)
	{
		double r, g, b;
		myImageAlgorithm.colorMap(gauss[k++], r, g, b);
		mesh.set_color(*v_it, OpenMesh::Vec3uc(int(r * 255), int(g * 255), int(b * 255)));
	}
}


/**************************************************
@brief   : 计算平均曲率   参考    https://computergraphics.stackexchange.com/questions/1718/
											what-is-the-simplest-way-to-compute-principal-curvature-for-a-mesh-triangle
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
void MeshViewerWidget::MeanCurvatureProcess(void) {
	// 便利所有点计算每个点的平均曲率
	for (Mesh::VertexIter v_it = mesh.vertices_begin(); v_it != mesh.vertices_end(); ++v_it) {
		std::cout << "MeanCurvature " << calMeanCurvature(v_it) << std::endl;
	}
}


/**************************************************
@brief   : 计算每个点的平均曲率
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
double MeshViewerWidget::calMeanCurvature(Mesh::VertexIter vertexIndex) {
	OpenMesh::Vec3d P = (mesh).point(*vertexIndex);//中心点坐标
	Point3d vecPoint(P[0], P[1], P[2]);
	std::vector<Point3d> neighborPoints;// N_1 rings points
	for (Mesh::VertexOHalfedgeIter vo_it = mesh.voh_begin(*vertexIndex); vo_it != mesh.voh_end(*vertexIndex); ++vo_it) {//这个顶点所带有的半边迭代器
		OpenMesh::ArrayKernel::VertexHandle to_v = mesh.to_vertex_handle(*vo_it);
		OpenMesh::Vec3d toPoint = mesh.point(to_v);// 邻接点
		neighborPoints.push_back({ toPoint[0],toPoint[1],toPoint[2] });
	}

	// 计算 voronoi 点集
	std::vector<Point3d> voronoiPoints;
	double angle = 0;
	vector3d sumVector(0, 0, 0);
	for (int i = 0; i < neighborPoints.size(); i++) {
		Point3d voronoiPoint = myMeshAlgorithm.calPointVoronoiMixed(vecPoint, neighborPoints[i], (i == (neighborPoints.size() - 1) ? neighborPoints[0] : neighborPoints[i + 1]));
		voronoiPoints.push_back(voronoiPoint);
		// 计算∑(cotα + cotβ)(Qi - P)
		double cotAlpha;
		double cotBeta;
		myMeshAlgorithm.calCotAlphaCotBeta(vecPoint, (i == 0 ? neighborPoints[neighborPoints.size() - 1] : neighborPoints[i - 1]), neighborPoints[i],
			(i == (neighborPoints.size() - 1) ? neighborPoints[0] : neighborPoints[i + 1]), cotAlpha, cotBeta);
		sumVector.x += (cotAlpha + cotBeta)*(neighborPoints[i].x - vecPoint.x);
		sumVector.y += (cotAlpha + cotBeta)*(neighborPoints[i].y - vecPoint.y);
		sumVector.z += (cotAlpha + cotBeta)*(neighborPoints[i].z - vecPoint.z);
	}
	// 采用海伦公式计算voronoi三角形的面积和
	double sumArea = 0;
	for (int i = 0; i < voronoiPoints.size(); i++) {
		sumArea += myMeshAlgorithm.areaUseThreePoints(vecPoint, voronoiPoints[i], (i == voronoiPoints.size() - 1) ? voronoiPoints[0] : voronoiPoints[i + 1]);
	}
	double lengthSumVector = sqrt(sumVector.x * sumVector.x + sumVector.y * sumVector.y + sumVector.z * sumVector.z);
	return 0.5f * (1.0 / (sumArea * 2) * lengthSumVector);
}


/**************************************************
@brief   : 计算一个点所对应的高斯曲率
@author  : lee
@input   : none
@output  : none
@time    : none
**************************************************/
double MeshViewerWidget::calGaussianCurvature(Mesh::VertexIter vertexIndex) {
	OpenMesh::Vec3d P = (mesh).point(*vertexIndex);//中心点坐标
	Point3d vecPoint(P[0], P[1], P[2]);
	std::vector<Point3d> neighborPoints;// N_1 rings points
	for (Mesh::VertexOHalfedgeIter vo_it = mesh.voh_begin(*vertexIndex); vo_it != mesh.voh_end(*vertexIndex); ++vo_it) {//这个顶点所带有的半边迭代器
		OpenMesh::ArrayKernel::VertexHandle to_v = mesh.to_vertex_handle(*vo_it);
		OpenMesh::Vec3d toPoint = mesh.point(to_v);// 邻接点
		neighborPoints.push_back({ toPoint[0],toPoint[1],toPoint[2] });
	}
	
	// 计算 voronoi 点集
	std::vector<Point3d> voronoiPoints;
	double angle = 0;
	for (int i = 0; i < neighborPoints.size(); i++) {
		Point3d voronoiPoint = myMeshAlgorithm.calPointVoronoiMixed(vecPoint, neighborPoints[i], (i == (neighborPoints.size() - 1) ? neighborPoints[0] : neighborPoints[i + 1]));
		voronoiPoints.push_back(voronoiPoint);
		vector3d P1(neighborPoints[i].x - vecPoint.x, neighborPoints[i].y - vecPoint.y, neighborPoints[i].z - vecPoint.z);
		Point3d tmp = (i == (neighborPoints.size() - 1) ? neighborPoints[0] : neighborPoints[i + 1]);
		vector3d P2(tmp.x - vecPoint.x, tmp.y - vecPoint.y, tmp.z - vecPoint.z);
		angle += myMeshAlgorithm.vector3fAngle(P1, P2);
	}
	// 采用海伦公式计算voronoi三角形的面积和
	double sumArea = 0;
	for (int i = 0; i < voronoiPoints.size(); i++) {
		sumArea += myMeshAlgorithm.areaUseThreePoints(vecPoint, voronoiPoints[i], (i == voronoiPoints.size() - 1) ? voronoiPoints[0] : voronoiPoints[i + 1]);
	}
	// 计算选中点1邻域角度的集合

	return 1.0 / sumArea * (2 * pi - angle);
}

 

最后

以上就是无限鞋子为你收集整理的三角网格上高斯曲率和平均曲率的全部内容,希望文章能够帮你解决三角网格上高斯曲率和平均曲率所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(52)

评论列表共有 0 条评论

立即
投稿
返回
顶部