概述
《matlab课件(修5-2).ppt》由会员分享,可在线阅读,更多相关《matlab课件(修5-2).ppt(29页珍藏版)》请在人人文库网上搜索。
1、5.2控制系统的数学描述与建模,制系统的数学模型在控制系统的研究中有着相当重要的地位,要对系统进行仿真处理,首先应当知道系统的数学模型,然后才可以对系统进行模拟。同样,如果知道了系统的模型,才可以在此基础上设计一个合适的控制器,使得系统响应达到预期的效果,从而符合工程实际的需要。,在线性系统理论中,一般常用的数学模型形式有:传递函数模型(系统的外部模型)、状态方程模型(系统的内部模型)、零极点增益模型和部分分式模型等。这些模型之间都有着内在的联系,可以相互进行转换。,按系统性能分:线性系统和非线性系统;连续系统和离散系统;定常系统和时变系统;确定系统和不确定系统。 1、线性连续系统:用线性微分。
2、方程式来描述,如果微分方程的系数为常数,则为定常系统;如果系数随时间而变化,则为时变系统。今后我们所讨论的系统主要以线性定常连续系统为主。 2、线性定常离散系统:离散系统指系统的某处或多处的信号为脉冲序列或数码形式。这类系统用差分方程来描述。 3、非线性系统:系统中有一个元部件的输入输出特性为非线性的系统。,5.2.1 系统的分类,微分方程是控制系统模型的基础,一般来讲,利用机械学、电学、力学等物理规律,便可以得到控制系统的动态方程,这些方程对于线性定常连续系统而言是一种常系数的线性微分方程。 如果已知输入量及变量的初始条件,对微分方程进行求解,就可以得到系统输出量的表达式,并由此对系统进行性。
3、能分析。 通过拉氏变换和反变换,可以得到线性定常系统的解析解,这种方法通常只适用于常系数的线性微分方程,解析解是精确的,然而通常寻找解析解是困难的。MATLAB提供了ode23、ode45等微分方程的数值解法函数,不仅适用于线性定常系统,也适用于非线性及时变系统。,5.2.2 线性定常连续系统的微分方程模型,例exp3_1.m,电路图如下,R=1.4欧,L=2亨,C=0.32法,初始状态:电感电流为零,电容电压为0.5V,t=0时刻接入1V的电压,求0t15s时,i(t),vo(t)的值,并且画出电流与电容电压的关系曲线。,对线性定常系统,式中s的系数均为常数,且a1不等于零,这时系统在MAT。
4、LAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示。 num=b1,b2,bm,bm+1 den=a1,a2,an,an+1 注意:它们都是按s的降幂进行排列的。,5.2.3 控制系统的参数模型,一、连续系统的多项式(传递函数)模型 连续系统的传递函数如下:,例题1.系统的传递函数为:,num=0 1 12 44 48; den=1 16 86 176 105; Printsys(num,den)%回车得,num/den = s3 + 12 s2 + 44 s + 48 - s4 + 16 s3 + 86 s2 + 176 s + 105 练习P。
5、127页例题5.25.3,零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。,在MATLAB中零极点增益模型用z,p,K矢量组表示。即: z=z1,z2,zm p=p1,p2,.,pn K=k 函数tf2zp()可以用来求传递函数的零极点和增益。,二、零极点增益模型,K为系统增益,zi为零点,pj为极点,控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控制单元的和的形式。 函数r,p,k=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微分单元的形式。 向量b和。
6、a是按s的降幂排列的多项式系数。部分分式展开后,余数返回到向量r,极点返回到列向量p,常数项返回到k。 b,a=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。,三、部分分式展开,举例:传递函数描述 1) num=12,24,0,20;den=2 4 6 2 2; 2) 借助多项式乘法函数conv来处理: num=4*conv(1,2,conv(1,6,6,1,6,6); den=conv(1,0,conv(1,1,conv(1,1,conv(1,1, 1,3,2,5);,零极点增益模型: num=1,11,30,0; den=1,9,45,87,50; z,p,k。
7、=tf2zp(num,den) ,z= 0 -6 -5,p= -3.0000+4.0000i -3.0000-4.0000i -2.0000 -1.0000,k= 1,结果表达式:,部分分式展开: num=2,0,9,1; den=1,1,4,4; r,p,k=residue(num,den) ,p= 0.0000+2.0000i 0.0000-2.0000i -1.0000,k= 2,r= 0.0000-0.2500i 0.0000+0.2500i -2.0000,结果表达式:,状态方程与输出方程的组合称为状态空间表达式,又称为动态方程,经典控制理论用传递函数将输入输出关系表达出来,而现代控。
8、制理论则用状态方程和输出方程来表达输入输出关系,揭示了系统内部状态对系统性能的影响。,第四节状态空间描述,在MATLAB中,系统状态空间用(A,B,C,D)矩阵组表示。,举例: 系统为一个两输入两输出系统 A=1 6 9 10; 3 12 6 8; 4 7 9 11; 5 12 13 14; B=4 6; 2 4; 2 2; 1 0; C=0 0 2 1; 8 0 2 2; D=zeros(2,2);,在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换。 模型转换的函数包括: residue:传递函数模型与部分分式模型互换 ss2tf: 状态空间模型转换。
9、为传递函数模型 ss2zp: 状态空间模型转换为零极点增益模型 tf2ss: 传递函数模型转换为状态空间模型 tf2zp: 传递函数模型转换为零极点增益模型 zp2ss: 零极点增益模型转换为状态空间模型 zp2tf: 零极点增益模型转换为传递函数模型,第五节模型的转换与连接,一、模型的转换,用法举例: 1)已知系统状态空间模型为: A=0 1; -1 -2; B=0;1; C=1,3; D=1; num,den=ss2tf(A,B,C,D,iu) iu用来指定第n个输入,当只有一个输入时可忽略。 num=1 5 2; den=1 2 1; z,p,k=ss2zp(A,B,C,D,iu) z=。
10、 -4.5616 p= -1 k=1 -0.4384 -1,2)已知一个单输入三输出系统的传递函数模型为: num=0 0 -2;0 -1 -5;1 2 0;den=1 6 11 6; A,B,C,D=tf2ss(num,den) A= -6 -11 -6 B= 1 C= 0 0 -2 D= 0 1 0 0 0 0 -1 -5 0 0 1 0 0 1 2 0 0,3)系统的零极点增益模型: z=-3;p=-1,-2,-5;k=6; num,den=zp2tf(z,p,k) num= 0 0 6 18 den= 1 8 17 10 a,b,c,d=zp2ss(z,p,k) a= -1.0000 。
11、0 0 b=1 2.0000 -7.0000 -3.1623 1 0 3.1623 0 0 c= 0 0 1.8974 d=0 注意:零极点的输入可以写出行向量,也可以写出列向量。,4)已知部分分式: r=-0.25i,0.25i,-2; p=2i,-2i,-1;k=2; num,den=residue(r,p,k) num= 2 0 9 1 den= 1 1 4 4 注意余式一定要与极点相对应。,1、并联:parallel 格式: a,b,c,d=parallel(a1,b1,c1,d1,a2,b2,c2,d2) 并联连接两个状态空间系统。 a,b,c,d=parallel(a1,b1,c1。
12、,d1,a2,b2,c2,d2,inp1,inp2,out1,out2) inp1和inp2分别指定两系统中要连接在一起的输入端编号,从u1,u2,un依次编号为1,2,n; out1和out2分别指定要作相加的输出端编号,编号方式与输入类似。inp1和inp2既可以是标量也可以是向量。out1和out2用法与之相同。如inp1=1,inp2=3表示系统1的第一个输入端与系统2的第三个输入端相连接。 若inp1=1 3,inp2=2 1则表示系统1的第一个输入与系统2的第二个输入连接,以及系统1的第三个输入与系统2的第一个输入连接。 num,den=parallel(num1,den1,num。
13、2,den2) 将并联连接的传递函数进行相加。,二、模型的连接,G1(s),G1(s),+,u,y,num1=2;den1=1 2; num2=5;den2=1 3; num,den=parallel(num1,den1,num2,den2); Printsys(num,den);,例题:,num/den = 7 s + 16 - s2 + 5 s + 6,2、串联:series 格式: a,b,c,d=series(a1,b1,c1,d1,a2,b2,c2,d2) 串联连接两个状态空间系统。 a,b,c,d=series(a1,b1,c1,d1,a2,b2,c2,d2,out1,in2) o。
14、ut1和in2分别指定系统1的部分输出和系统2的部分输入进行连接。 num,den=series(num1,den1,num2,den2) 将串联连接的传递函数进行相乘。,G1(s),G2(s),u,y,3、反馈:feedback 格式: a,b,c,d=feedback(a1,b1,c1,d1,a2,b2,c2,d2) 将两个系统按反馈方式连接,一般而言,系统1为对象,系统2为反馈控制器。 a,b,c,d=feedback(a1,b1,c1,d1,a2,b2,c2,d2,sign) 系统1的所有输出连接到系统2的输入,系统2的所有输出连接到系统1的输入,sign用来指示系统2输出到系统1输入。
15、的连接符号,sign缺省时,默认为负,即sign= -1。总系统的输入/输出数等同于系统1。 a,b,c,d=feedback(a1,b1,c1,d1,a2,b2,c2,d2,inp1,out1) 部分反馈连接,将系统1的指定输出out1连接到系统2的输入,系统2的输出连接到系统1的指定输入inp1,以此构成 闭环系统。 num,den=feedback(num1,den1,num2,den2,sign) 可以得到类似的连接,只是子系统和闭环系统均以传递函数的形式表示。sign的含义与前述相同。,G1(s),G1(s),u,y,+,-,4、闭环:cloop(单位反馈) 格式: ac,bc,cc。
16、,dc=cloop(a,b,c,d,sign) 通过将所有的输出反馈到输入,从而产生闭环系统的状态空间模型。当sign=1时采用正反馈;当sign= -1时采用负反馈;sign缺省时,默认为负反馈。 ac,bc,cc,dc=cloop(a,b,c,d,outputs,inputs) 表示将指定的输出outputs反馈到指定的输入inputs,以此构成闭环系统的状态空间模型。一般为正反馈,形成负反馈时应在inputs中采用负值。 numc,denc=cloop(num,den,sign) 表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同。,G(s),U ,Y,5系统增广联接 格式。
17、: A,B,C,Dappend(A1,B1,C1,D1,A2,B2,C2,D2) ;,例题: ns1=10;ds1=1 0; a1,b1,c1,d1=tf2ss(ns1,ds1); ns2=2;ds2=1 0; a2,b2,c2,d2=tf2ss(ns2,ds2); as,bs,cs,ds=append(a1,b1,c1,d1,a2,b2,c2,d2); a,b,c,d=cloop(as,bs,cs,ds,1 2 1 2,-1 -2 -2 -1) a = -10 -2 -10 -2 b = 1 0 0 1 c = 10 0 0 2 d = 0 0 0 0,x1,x2,举例应用: 1)exp3_。
18、2.m 系统1为: 系统2为: 求按串联、并联、正反馈、负反馈连接时的系统状态方程及系统1按单位负反馈连接时的状态方程。,2)exp3_3.m系统1、系统2方程如下所示。,求部分并联后的状态空间,要求u11与u22连接,u13与u23连接,y11与y21连接。,ctrb和obsv函数可以求出状态空间系统的可控性和可观性矩阵。 格式:co=ctrb(a,b) ob=obsv(a,c) 对于nn矩阵a,nm矩阵b和pn矩阵c ctrb(a,b)可以得到nnm的可控性矩阵 co=b ab a2b an-1b obsv(a,c)可以得到nmn的可观性矩阵 ob=c ca ca2 can-1 当co的秩为n时,系统可控;当ob的秩为n时,系统可观。exp3_4.m,三、模型的属性,本章小结 在进行控制系统的仿真之前,建立系统的模型表达式是关键的一步。 对于控制系统,有不同的分类,在本课程中主要讨论的是线性定常连续系统 系统的描述有不同的方法:微分方程;传递函数;零极点增益模式;部分分式展开;状态空间模型等。 系统的模型之间可以相互转换,要求熟练掌握各种模型之间转换的命令。 模型之间可以进行连接,要求掌握常用的模型连接命令:串联、并联、反馈及闭环。
最后
以上就是贪玩月饼为你收集整理的传函分解并联形式matlab,matlab课件(修5-2).ppt的全部内容,希望文章能够帮你解决传函分解并联形式matlab,matlab课件(修5-2).ppt所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复