我是靠谱客的博主 着急硬币,最近开发中收集的这篇文章主要介绍python opencv五官识别及边缘检测,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

import cv2 as cv
import copy
import numpy as np#添加模块和矩阵模块

# 脸
face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml')
face_cascade.load('E://opencv/build/etc/haarcascades/haarcascade_frontalface_default.xml')
# 眼睛
eye_cascade = cv.CascadeClassifier('haarcascade_eye.xml')
eye_cascade.load('E://opencv/build/etc/haarcascades/haarcascade_eye.xml')
# 嘴巴
mouth_cascade = cv.CascadeClassifier('haarcascade_mcs_mouth.xml')
mouth_cascade.load('E://opencv/build/etc/haarcascades/haarcascade_mcs_mouth.xml')
# 鼻子
nose_cascade = cv.CascadeClassifier('haarcascade_mcs_nose.xml')
nose_cascade.load('E://opencv/build/etc/haarcascades/haarcascade_mcs_nose.xml')
# 耳朵
leftear_cascade = cv.CascadeClassifier('haarcascade_mcs_leftear.xml')
leftear_cascade.load('E://opencv/build/etc/haarcascades/haarcascade_mcs_leftear.xml')
rightear_cascade = cv.CascadeClassifier('haarcascade_mcs_rightear.xml')
rightear_cascade.load('E://opencv/build/etc/haarcascades/haarcascade_mcs_rightear.xml')

def edge_demo(image):
    blurred = cv.GaussianBlur(image, (3, 3), 0)
    gray = cv.cvtColor(blurred, cv.COLOR_RGB2GRAY)
    # xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0) #x方向梯度
    # ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1) #y方向梯度
    # edge_output = cv.Canny(xgrad, ygrad, 50, 150)
    edge_output = cv.Canny(gray, 50, 150)
    cv.imshow("Canny Edge", edge_output)
    dst = cv.bitwise_and(image, image, mask= edge_output)
    cv.imshow("Color Edge", dst)
def edge_demo1(image):
    # 先将图像高斯模糊去噪
    blurred = cv.GaussianBlur(image, (3, 3), 0)
    # 图像灰度化
    gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
    # 图像边缘提取
    edge_output = cv.Canny(gray, 50, 150)
    cv.imshow("CannyEdge", edge_output)

    # 彩色边线
    # dst = cv.bitwise_and(image,gray,mask=edge_output)
    # cv.imshow("Color Edge",dst)

    return edge_output
def edge_demo2(image):
    # 先将图像高斯模糊去噪
    blurred = cv.GaussianBlur(image, (3, 3), 0)
    # 图像灰度化
    gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
    # 图像边缘提取
    edge_output = cv.Canny(gray, 50, 150)

    # 彩色边线
    # dst = cv.bitwise_and(image,gray,mask=edge_output)
    # cv.imshow("Color Edge",dst)

    return edge_output
#画轮廓
def contours_demo(image):
    """
    dst = cv.GaussianBlur(image,(3,3),0)    #用高斯模糊去噪
    gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY)
    #图像二值化---返回阈值和二值图像
    ret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)
    cv.imshow("binary_image",binary)
    """
    image1=copy.copy(image)
    binary = edge_demo1(image1)

    contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
    for i, contour in enumerate(contours):
        cv.drawContours(image1, contours, i, (255, 255, 255), -2)
        print(i)
    cv.imshow("detect contours", image1)

cap=cv.VideoCapture(3)#开摄像头参数为第几个摄像头
while(1):    # get a frame
    ret, frame = cap.read()    # show a frame
    frame1=copy.copy(frame)
    imgsmall=copy.copy(frame)
    #人脸识别
    gray = cv.cvtColor(frame1, cv.COLOR_BGR2GRAY)
    # 脸
    faces = face_cascade.detectMultiScale(gray, 1.2, 3)
    for (x, y, w, h) in faces:
      img = cv.rectangle(frame1, (x, y), (x + w, y + h), (255, 0, 0), 2)
      roi_gray = gray[y:y + h, x:x + w]
      roi_color = img[y:y + h, x:x + w]
      # 眼睛
      eyes = eye_cascade.detectMultiScale(roi_gray, 1.2, 3)
      for (ex, ey, ew, eh) in eyes:
        cv.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
      # 嘴巴
      mouth = mouth_cascade.detectMultiScale(roi_gray, 1.5, 5)
      for (mx, my, mw, mh) in mouth:
        cv.rectangle(roi_color, (mx, my), (mx + mw, my + mh), (0, 0, 255), 2)
      # 鼻子
      nose = nose_cascade.detectMultiScale(roi_gray, 1.2, 5)
      for (nx, ny, nw, nh) in nose:
        cv.rectangle(roi_color, (nx, ny), (nx + nw, ny + nh), (255, 0, 255), 2)

      # 耳朵
      leftear = leftear_cascade.detectMultiScale(roi_gray, 1.01, 2)
      for (lx, ly, lw, lh) in leftear:
        cv.rectangle(roi_color, (lx, ly), (lx + lw, ly + lh), (0, 0, 0), 2)

      rightear = rightear_cascade.detectMultiScale(roi_gray, 1.01, 2)
      for (rx, ry, rw, rh) in rightear:
        cv.rectangle(roi_color, (rx, ry), (rx + rw, ry + rh), (0, 0, 0), 2)

      cv.imshow('img', img)

    contours_demo(frame)#原图画轮廓
    #cv.namedWindow('input_image', cv.WINDOW_NORMAL)  # 设置为WINDOW_NORMAL可以任意缩放
    #cv.imshow('input_image', frame)
    edge_demo(frame)#灰度边缘
    cv.imshow("capture", frame)
    #cv.imshow("small",imgsmall)
    if cv.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv.destroyAllWindows()
#释放并销毁窗口

最后

以上就是着急硬币为你收集整理的python opencv五官识别及边缘检测的全部内容,希望文章能够帮你解决python opencv五官识别及边缘检测所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(59)

评论列表共有 0 条评论

立即
投稿
返回
顶部