我是靠谱客的博主 彩色发夹,最近开发中收集的这篇文章主要介绍pandas map(), apply(), applymap() 区别解析,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

文章目录

      • 基础
      • map()方法
      • apply() 方法
      • 背景介绍:
      • applymap()
      • 总结:

基础

以下操作基于python 3.6 windows 10 环境下 通过
将通过实例来演示三者的区别

toward_dict = {1: '东', 2: '南', 3: '西', 4: '北'}
df = pd.DataFrame({'house' : list('AABCEFG'),
'price' : [100, 90, '', 50, 120, 150, 200],
'toward' : ['1','1','2','3','','3','2']})
df

以下操作基于此图中的df


map()方法

通过df.(tab)键,发现df的属性列表中有apply() 和 applymap(),但没有map().
map()是python 自带的方法, 可以对df某列内的元素进行操作, 我个人最常用的场景就是有toward_dict的映射关系 ,为df中的toward匹配出结果,

 df['朝向'] = df.toward.map(toward_dict);df

代码运行结果
结果就是没有匹配出来, why???
因为df.toward这列数字是str型的, toward_dict中的key是int型,下面修正操作下:两个思路:

第一种思路:`toward_dict`的key转换为str型
toward_dict2 = dict((str(key), val) for key, val in toward_dict.items())

完美解决

# 第二种思路, 将df.toward转为int型
df.toward = df.toward.map(lambda x: np.nan if x == '' else x).map(int,na_action='ignore')
df['朝向2'] = df.toward.map(toward_dict);df

结果呈现

apply() 方法

更新时间: 2018-08-10
我目前的实际工作中使用apply()方法比较少, 所以整理的内容比较简陋, 后续涉及到数据分析方面可能会应用比较多些.

先将上面的测试中的map替换为apply,看看怎么样?
结果报错了, ValueError, 还是老老实实写实际操作例子吧 ?
参考DataFrame.apply官方文档
文档中第一个参数:

func : function
Function to apply to each column or row.

意思即是, 将传入的func应用到每一列或每一行,进行元素级别的运算
第二个参数:

axis : {0 or ‘index’, 1 or ‘columns’}, default 0
Axis along which the function is applied:
0 or ‘index’: apply function to each column. # 注意这里的解释
1 or ‘columns’: apply function to each row.

举例:
这里写图片描述

这个要特别注意的,
没有继续使用map里的DF, 是因为df.house是字符串, 不能进行np.sum运算,会报错.
2018年12月3日 新增:
最近在工作中使用到了pandas.apply()方法,更新如下:

背景介绍:

一个 df 有三个列需要进行计算,change_type 值 为1和0, 1为涨价,0为降价, price为现价, changed为涨降价的绝对值, 现求:涨降价的比例, 精确到0位,无小数位,
解决思路:
1.最主要的计算是: 涨降价的绝对值/ 原价
2.最主要的难点是: 涨价的原价 = 现价 - 绝对值
降价的原价 = 现价 + 绝对值
伪代码如下: 涨降价比例 = round(changed/(price 加上或减去 changed), 0)
就是我需求的结果了.

解决方案 如下:
以下代码经过win 10 环境 python3.6 版本测试通过

import pandas as pd
df = pd.DataFrame({'change_type' : [1,1,0,0,1,0],
'price' : [100, 90, 50, 120, 150, 200],
'changed' : [10,8,4,11,14,10]})
def get_round(change_type, price, changed_val):
"""
策略设计
"""
if change_type == 0:
return round(changed_val/(price + changed_val) * 100, 2)
elif change_type == 1:
return round(changed_val/(price - changed_val) * 100, 2)
else:
print(f'{change} is not exists')
# 策略实现
df['round'] = df.apply(lambda x: get_round(x['change_type'], x['price'], x['changed']),axis=1)

若有问题, 欢迎指正, 谢谢

applymap()

参考DataFrame.applymap官方文档:

func : callable
Python function, returns a single value from a single value.

文档很简单, 只有一个参数, 即传入的func方法
样例参考文档吧, 没有比这个更简单了

总结:

map() 方法是pandas.series.map()方法, 对DF中的元素级别的操作, 可以对df的某列或某多列, 可以参考文档
apply(func) 是DF的属性, 对DF中的行数据或列数据应用func操作.
applymap(func) 也是DF的属性, 对整个DF所有元素应用func操作


– the end –

最后

以上就是彩色发夹为你收集整理的pandas map(), apply(), applymap() 区别解析的全部内容,希望文章能够帮你解决pandas map(), apply(), applymap() 区别解析所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(45)

评论列表共有 0 条评论

立即
投稿
返回
顶部