我是靠谱客的博主 细心大船,最近开发中收集的这篇文章主要介绍pandas数据映射、聚合和绘图函数,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

import pandas as pd
pd.__version__
# 就是pandas模块,对一些汉字,处理不好,版本会继续升级的
  • 输出

    ‘0.22.0’

# pandas数据处理
import numpy as np
from pandas import Series, DataFrame
## 1、删除重复元素 ### 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True
# 在mysql中有属性表,城市,省份 市 市的名字只能是唯一,唯一键的效率低
# 如果有属性数据重复,那么pandas拿到的就是一个带有数据冗余的表
df = DataFrame({'color': ['white', 'red', 'white'], 'size': [10, 20, 10]})
df
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
0white10
1red20
2white10
# 
df.duplicated()
  • 输出

    0 False
    1 False
    2 True
    dtype: bool

### 使用drop_duplicates()函数删除重复的行
df.drop_duplicates()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
0white10
1red20
### 如果使用pd.concat([df1,df2],axis = 1)生成新的DataFrame,新的df中columns相同,使用pandas低版本使用duplicate()和drop_duplicates()都会出问题
df2 = pd.concat([df, df], axis=1)
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsizecolorsize
0white10white10
1red20red20
2white10white10
df2.duplicated()
  • 输出

    0 False
    1 False
    2 True
    dtype: bool

df2.drop_duplicates()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsizecolorsize
0white10white10
1red20red20
# 如果真的出现了两列完全相同,那么我们该怎么删除列
# drop 会删除所有的
df2.T.drop_duplicates().T
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
0white10
1red20
2white10
## 2. 映射 映射的含义:创建一个映射关系列表,把values元素和一个特定的标签或者字符串绑定 需要使用字典: `map = { ‘label1’:’value1’, ‘label2’:’value2’, … } ` 包含三种操作: - replace()函数:替换元素 - 最重要:map()函数:新建一列 - rename()函数:替换索引 ### 1) replace()函数:替换元素
df
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
0white10
1red20
2white10
df.mean()
  • 输出

    size 13.333333
    dtype: float64

d = {'white': 255, 'red': 128}
df.replace(d)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
025510
112820
225510
d = {'white': 255, 'gray': 128}
df.replace(d)
# map也可以用来检索文章中敏感词
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
025510
1red20
225510
### 使用replace()函数,对values进行替换操作 作用: 数据处理时,需要将,String类型转换成int,然后才可以进行计算机运算 性别,男:0;女:1 ### 首先定义一个字典 ### 调用.replace() ### replace还经常用来替换NaN元素
df
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
0white10
1red20
2white10
df['size'][0] = np.nan
C:UsersAdministratorAnaconda3libsite-packagesipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy “”“Entry point for launching an IPython kernel. C:UsersAdministratorAnaconda3libsite-packagespandascoreindexing.py:194: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self._setitem_with_indexer(indexer, value)
# 我们的表中有中如果nan,我们想填充0, fillna()
d = {np.nan: 0}
df.replace(d)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
colorsize
0white0.0
1red20.0
2white10.0
### 2) map()函数:新建一列 使用map()函数,由已有的列生成一个新列 适合处理某一单独的列。
df2 = DataFrame(np.random.randint(0, 150, size=(4, 2)),
columns=['Python', 'Java'],
index=list('abcd'))
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJava
a581
b9971
c667
d104143
#使用map函数新建一列
# 生成一个Math的列
df2['Math'] = df2['Python'].map(lambda x: x + 20)
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMath
a58178
b9971119
c66786
d104143124
def level(x):
if x > 100:
return '完美'
elif x > 100 and x >= 80:
return '优秀'
elif x < 80 and x >= 60:
return '及格'
else:
return '不及格'
#用数学成绩判断这个人的等级,然后将判断得到的等级添加为一列
df2['level'] = df2['Math'].map(level)
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
a58178不及格
b9971119完美
c66786不及格
d104143124完美
### 仍然是新建一个字典 ### map()函数中可以使用lambda函数 ### transform()和map()类似 transform是变形的意思 transform中的值只能是一个function
df2['Math'] = df2['Math'].transform(lambda x: x + np.random.randint(0, 50, size=1)[0])
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
a581121不及格
b9971161完美
c667134不及格
d104143158完美

使用map()函数新建一个新列

df2.drop('level', axis=1, inplace=True)
df2
# 我们在pandas中map中最大区别一个使用dict一个不可以使用
df2['level'] = df2['Java'].transform(level)
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
a581121不及格
b9971161及格
c667134不及格
d104143158完美
### 3) rename()函数:替换索引 仍然是新建一个字典 使用rename()函数替换行索引
df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
a581121不及格
b9971161及格
c667134不及格
d104143158完美
#这个是不行的
df2.index[0] = '张三'
# rename 要替换的索引存在则替换,不存在就不管
df2.rename({'a':'张三', 'Python': '大蟒蛇'},axis=1)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
大蟒蛇JavaMathlevel
a581121不及格
b9971161及格
c667134不及格
d104143158完美
# rename中的参数值可以是一个func
def index_rename(item):
if item == 'a':
return '张三'
else:
return '李四'
df2.rename(index_rename)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
张三581121不及格
李四9971161及格
李四667134不及格
李四104143158完美
## 3. 异常值检测和过滤 使用describe()函数查看每一列的描述性统计量
# 数据中比较大或特别小的都可以认为是异常值
# 大头子和小头爸爸都算是人类中的异常值
# NaN也是异常值
df3 = DataFrame(np.random.randint(0, 150, size=(10, 4)),
columns=['Python', 'Java', 'PHP', 'VR'])
df3
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaPHPVR
01221914688
182105120146
21341981127
30787539
43115198
5161477144
61692124131
74214164114
8311036413
910383128108
df3.describe()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaPHPVR
count10.00000010.00000010.00000010.000000
mean54.90000090.20000089.20000081.800000
std50.85808143.64961539.00085551.410764
min0.00000019.00000019.0000008.000000
25%16.00000079.25000065.75000040.250000
50%36.50000097.50000078.00000098.000000
75%97.750000112.500000123.000000123.750000
max134.000000147.000000146.000000146.000000

使用std()函数可以求得DataFrame对象每一列的标准差

df3.std()
  • 输出

    Python 50.858081
    Java 43.649615
    PHP 39.000855
    VR 51.410764
    dtype: float64

根据每一列的标准差,对DataFrame元素进行过滤。

借助any()函数, 测试是否有True,有一个或以上返回True,反之返回False

对每一列应用筛选条件,去除标准差太大的数据

df3
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaPHPVR
01221914688
182105120146
21341981127
30787539
43115198
5161477144
61692124131
74214164114
8311036413
910383128108
# 大于70的数据我们认定为异常值
cond1 = df3 >= 70
cond2 = cond1.all(axis=1)
df3[cond2]
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaPHPVR
182105120146
910383128108

删除特定索引df.drop(labels,inplace = True)

## 4. 排序 使用.take()函数排序 可以借助np.random.permutation()函数随机排序
# 生成指定大小的矩阵
np.random.permutation([4, 2])
  • 输出

    array([4, 2])

df2
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
a581121不及格
b9971161及格
c667134不及格
d104143158完美
df2.iloc[::-1]
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
d104143158完美
c667134不及格
b9971161及格
a581121不及格
# 通过手写的方式将矩阵进行颠倒
df2.take([3, 2, 1, 0])
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathlevel
d104143158完美
c667134不及格
b9971161及格
a581121不及格
# 怎么进行一个随机的排序
df2.take(np.random.permutation(4), axis=1)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonlevelJavaMath
a58不及格1121
b99及格71161
c66不及格7134
d104完美143158
### 随机抽样 当DataFrame规模足够大时,直接使用np.random.randint()函数,就配合take()函数实现随机抽样
df4 = DataFrame(np.random.randint(0, 150, size=(1000, 4)),
columns=['Python', 'Java', 'Math', 'China'])
df4
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathChina
00944552
11304412060
24513414914
31862455
4736611227
5179061136
610610129100
7605814260
847947024
9911510180
1092213535
11149573992
12131143149142
13356812119
14137624768
15677414034
168513988104
173212231145
1865243317
1968416099
20761042978
216192658
2265231222
23279012293
24551194927
259295116127
26127963960
2711615103130
28865311128
2912091138124
970100601766
9711221483022
97233133121110
973346662133
974881493131
9751098614328
97669458631
977559257138
97812637223
97910040116142
980113877480
98144629339
98214463130111
983385710555
98410189420
985861441235
986966854
987109361127
98876179110
9892814112876
9901361361366
9918012961101
9921411435138
9932946118129
994406469100
995927014254
996115716255
997281093107
998311378875
999763644119

1000 rows × 4 columns

# 抽取1000行中50个
#公司年会可以做一个抽奖系统
df4.take(np.random.randint(0, 1000, size=50))
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaMathChina
1101114512164
799944221
333363134145
998311378875
14361468723
6021151095953
9031323214781
741025714684
5001241168417
21849991126
490745639134
771175576
6323910145106
615751138237
3694617139106
2275014413467
51827994215
86668307943
626471527111
748911117089
1358446131110
926156129148
905311362532
38713624103131
837145501018
804607570139
7276579814
907142638825
538145418918
8151113369
64613074315
13114811710317
846141849948
9231111484078
9610812841108
2754419341
6121571681
757103794870
58113107337
7095340117121
6411461712723
72422681632
6711343414080
4451084513455
88313711411290
3001391041219
45166134138127
711399214774
46614993470
3221088612262
## 5. 数据聚合【重点】 数据聚合是数据处理的最后一步,通常是要使每一个数组生成一个单一的数值。 数据分类处理: - 分组:先把数据分为几组 - 用函数处理:为不同组的数据应用不同的函数以转换数据 - 合并:把不同组得到的结果合并起来 数据分类处理的核心: groupby()函数 groupby()在pandas中也担任分组的重担 如果想使用color列索引,计算price1的均值,可以先获取到price1列,然后再调用groupby函数,用参数指定color这一列 使用.groups属性查看各行的分组情况:
df5 = DataFrame({'item': ['萝卜', '白菜', '西红柿', '辣椒', '冬瓜','萝卜', '西红柿', '白菜',
'西红柿', '辣椒', '冬瓜'],
'seller': ['李大妈', '李大妈', '李大妈', '王大妈', '王大妈', '王大妈', '王大妈', '赵大妈', '赵大妈', '赵大妈', '赵大妈'],
'price': np.random.randint(3, 10, size=11)},
columns = ['item', 'seller', 'price'])
df5
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
itemsellerprice
0萝卜李大妈9
1白菜李大妈7
2西红柿李大妈8
3辣椒王大妈6
4冬瓜王大妈8
5萝卜王大妈5
6西红柿王大妈4
7白菜赵大妈8
8西红柿赵大妈4
9辣椒赵大妈6
10冬瓜赵大妈6
# 首先是分组,然后是找出一个最小值
# 找出各蔬菜中最便宜的
df5.groupby(['item']).min()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sellerprice
item
冬瓜王大妈6
白菜李大妈7
萝卜李大妈5
西红柿李大妈4
辣椒王大妈6
df5.groupby(['item']).max()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sellerprice
item
冬瓜赵大妈8
白菜赵大妈8
萝卜王大妈9
西红柿赵大妈8
辣椒赵大妈6
# 求平均值,并且添加前缀
mean_price = df5.groupby(['item']).mean().add_prefix('mean_')
mean_price
# select avg('item) as asd
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
mean_price
item
冬瓜7.000000
白菜7.500000
萝卜7.000000
西红柿5.333333
辣椒6.000000
# 把得到的平均值融合到原表中
# left_on 设定左边表的关联列,右表对齐,多对多
df6 = pd.merge(df5, mean_price, left_on='item', right_index=True)
df6
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
itemsellerpricemean_price
0萝卜李大妈97.000000
5萝卜王大妈57.000000
1白菜李大妈77.500000
7白菜赵大妈87.500000
2西红柿李大妈85.333333
6西红柿王大妈45.333333
8西红柿赵大妈45.333333
3辣椒王大妈66.000000
9辣椒赵大妈66.000000
4冬瓜王大妈87.000000
10冬瓜赵大妈67.000000
# 先求一个平方差,求各个的蔬菜价格波动
price_std = df5.groupby(['item']).std().add_prefix('std_')
price_std
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
std_price
item
冬瓜1.414214
白菜0.707107
萝卜2.828427
西红柿2.309401
辣椒0.000000
# 将蔬菜的波动值融合到原数据中
df7 = pd.merge(df6, price_std, left_on='item', right_index=True)
df7
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
itemsellerpricemean_pricestd_price
0萝卜李大妈97.0000002.828427
5萝卜王大妈57.0000002.828427
1白菜李大妈77.5000000.707107
7白菜赵大妈87.5000000.707107
2西红柿李大妈85.3333332.309401
6西红柿王大妈45.3333332.309401
8西红柿赵大妈45.3333332.309401
3辣椒王大妈66.0000000.000000
9辣椒赵大妈66.0000000.000000
4冬瓜王大妈87.0000001.414214
10冬瓜赵大妈67.0000001.414214
# std()标准平方差,看数据的波动,描述情况
def std_price(std_p):
if std_p > 2.5:
return '价格很坑'
elif std_p > 1:
return '价格稳定'
else:
return '良心菜价'
# map
# 将各个蔬菜的价格情况添加为一列
df7['std_p'] = df7['std_price'].map(std_price)
df7
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
itemsellerpricemean_pricestd_pricestd_p
0萝卜李大妈97.0000002.828427价格很坑
5萝卜王大妈57.0000002.828427价格很坑
1白菜李大妈77.5000000.707107良心菜价
7白菜赵大妈87.5000000.707107良心菜价
2西红柿李大妈85.3333332.309401价格稳定
6西红柿王大妈45.3333332.309401价格稳定
8西红柿赵大妈45.3333332.309401价格稳定
3辣椒王大妈66.0000000.000000良心菜价
9辣椒赵大妈66.0000000.000000良心菜价
4冬瓜王大妈87.0000001.414214价格稳定
10冬瓜赵大妈67.0000001.414214价格稳定
## 6.0 高级数据聚合 可以使用pd.merge()函数将聚合操作的计算结果添加到df的每一行 使用groupby分组后调用加和等函数进行运算,让后最后可以调用add_prefix(),来修改列名 ### 可以使用transform和apply实现相同功能 在transform或者apply中传入函数即可
df7
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
itemsellerpricemean_pricestd_pricestd_p
0萝卜李大妈97.0000002.828427价格很坑
5萝卜王大妈57.0000002.828427价格很坑
1白菜李大妈77.5000000.707107良心菜价
7白菜赵大妈87.5000000.707107良心菜价
2西红柿李大妈85.3333332.309401价格稳定
6西红柿王大妈45.3333332.309401价格稳定
8西红柿赵大妈45.3333332.309401价格稳定
3辣椒王大妈66.0000000.000000良心菜价
9辣椒赵大妈66.0000000.000000良心菜价
4冬瓜王大妈87.0000001.414214价格稳定
10冬瓜赵大妈67.0000001.414214价格稳定
# 将各个蔬菜的价格求和
df7.groupby(['item'])['price'].sum()
  • 输出

    item
    冬瓜 14
    白菜 15
    萝卜 14
    西红柿 16
    辣椒 12
    Name: price, dtype: int32

df7.groupby(['item'])['price'].transform(sum)
  • 输出

    0 14
    5 14
    1 15
    7 15
    2 16
    6 16
    8 16
    3 12
    9 12
    4 14
    10 14
    Name: price, dtype: int32

transform()与apply()函数还能传入一个函数或者lambda


df = DataFrame({'color':['white','black','white','white','black','black'],
'status':['up','up','down','down','down','up'],
'value1':[12.33,14.55,22.34,27.84,23.40,18.33],
'value2':[11.23,31.80,29.99,31.18,18.25,22.44]})

apply的操作对象,也就是传给lambda的参数是整列的数组

# np.mean()
# apply 与 transform的最大区别,在于transform做了循环(交叉表)CROSS JOIN , apply比较简洁,调用原本的功能
df7.groupby(['item'])['price'].apply(sum)
  • 输出

    item
    冬瓜 14
    白菜 15
    萝卜 14
    西红柿 16
    辣椒 12
    Name: price, dtype: int64

df7.groupby(['item'])['price'].apply(np.mean)
- 输出 item 冬瓜 7.000000 白菜 7.500000 萝卜 7.000000 西红柿 5.333333 辣椒 6.000000 Name: price, dtype: float64 Series和DataFrame都有一个都有一个生成各类图标的plot方法,默认情况下锁生成的都是线形图
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
# matplotlib不引入,在调用plot()的时候不会报错,但是图片也显示不出
# pandas和matplotlib进行了深度合作
import matplotlib.pyplot as plt
# 线形图 简单示例Series图例表示.plot()
s = Series(np.random.randint(0 ,20, size=10))
s
  • 输出

    0 14
    1 6
    2 19
    3 5
    4 7
    5 16
    6 1
    7 10
    8 11
    9 17
    dtype: int32

s.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x9fe0240>

这里写图片描述

简单的DataFrame图标实例.plot()

df = DataFrame(np.random.randint(0, 150, size=(5, 4)),columns = ['Python', 'Java', 'PHP', 'Ruby'])
df.plot()
<matplotlib.axes._subplots.AxesSubplot at 0xa106390>

这里写图片描述

### 柱状图 DataFrame柱状图例
df.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0xa4c5240>

这里写图片描述

df.plot(kind='barh')
<matplotlib.axes._subplots.AxesSubplot at 0xa430be0>

这里写图片描述

读取tips.csv,查看每天聚会人数,每天各种聚会规模的比例饿
求和并df.sum(),注意灵活使用axis()

tip = pd.read_csv('./tips.csv')
tip
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
day123456
0Fri1161100
1Stat253181310
2Sun039151831
3Thur1484513

将第一列day数据编程行索引set_index

tip.set_index('day',inplace=True)
tip
# 行 代表是星期几
# 列 代表的事几个人一同去吃饭
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
123456
day
Fri1161100
Stat253181310
Sun039151831
Thur1484513
tip.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0xc1ded68>

这里写图片描述

#将不重要的数据给去除掉
tip.drop(axis=1,labels=['1', '6'], inplace=True)
# 还能用什么方法保留2-5的数据
tip.iloc[:,1:-1].plot(kind='bar')
# 下课自己去尝试一下
<matplotlib.axes._subplots.AxesSubplot at 0xc481128>

这里写图片描述

tip.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0xc7a9668>

这里写图片描述

## 直方图 random生成随机直方图,调用hist()方法
nd = np.random.randint(0, 10, size=10)
nd
  • 输出

    array([2, 3, 5, 4, 7, 0, 4, 4, 0, 5])

s = Series(nd)
# bins 默认值是10 值越大条越细
s.hist(bins=50)
<matplotlib.axes._subplots.AxesSubplot at 0xc9296d8>

这里写图片描述

随机百分比密度图

# density 密度
s.plot(kind='kde')
<matplotlib.axes._subplots.AxesSubplot at 0xca69710>

这里写图片描述

这两张表经常会被画在一起,直方图以规格形式给出(以便画出密度图),然后在再其上绘制核密度估计。

接下来看看一个由两个不同de 标准正太正太分布组成的双峰分布。

np.random.normal()正太分布函数

直方图hist,函数中心必须添加属性normed = True

nd1 = np.random.normal(loc=15, scale=5, size=1000)
nd1
  • 输出

    array([16.50002167, 21.95871306, 22.75958416, 17.31162324, 21.11362045,
    18.26581647, 14.3677174 , 14.04193695, 24.47250718, 12.15495935,
    9.27291491, 12.31342298, 10.2092411 , 26.50106733, 15.73813638,
    15.96716855, 16.69108033, 17.47009465, 23.25585844, 3.75013434,
    25.12165759, 9.2131128 , 20.80536815, 15.5412481 , 28.90305594,
    20.53246725, 11.80165575, 21.60802209, 11.17585822, 16.32740781,
    15.18755747, 18.45527818, 20.69591603, 21.49051133, 17.71510416,
    18.80558295, 24.17867724, 20.85117481, 20.24591299, 10.10623473,
    14.24666052, 17.52448709, 19.22814077, 15.72357144, 20.43921318,
    8.0917059 , 22.00146547, 23.50631652, 9.19318319, 9.66151146,
    15.75132368, 15.32207848, 15.48579172, 25.26377042, 9.0799947 ,
    7.36254758, 2.42731825, 18.10300724, 10.88015804, 13.39732585,
    8.91052017, 24.09794363, 18.02868005, 9.901521 , 13.21712227,
    19.5068725 , 10.50911924, 14.89803695, 15.50261478, 17.15580065,
    14.98757024, 26.86473339, 12.68019989, 15.02038962, 17.42206335,
    11.8994741 , 14.31309029, 13.75152275, 6.47324371, 14.73115004,
    21.72693826, 20.54387112, 21.36295281, 25.51458225, 7.25840778,
    13.76897525, 19.77348404, 15.09407833, 18.76318749, 5.43239314,
    15.45835862, 15.40969353, 16.28667652, 13.07865591, 8.28808502,
    13.42694347, 18.38122404, 17.6814759 , 19.28344426, 9.53901169,
    14.46634917, 11.84352671, 11.09474199, 4.75771378, 15.53622797,
    13.13240292, 11.15249509, 8.30862199, 17.21214064, 17.02251594,
    16.28650651, 8.21461943, 14.76498248, 15.98369367, 11.98718219,
    17.02526983, 19.97020523, 16.44969423, 13.71055375, 22.77569864,
    8.51357972, 6.61518919, 14.84898364, 17.58370265, 17.49575552,
    12.93721125, 14.53553582, 18.22937262, 15.59990324, 10.94411136,
    15.15079863, 7.75436718, 19.64155892, 8.05933151, 14.14798446,
    25.93909358, 9.48265882, 16.06401139, 17.17927089, 16.88383318,
    19.95283715, 12.02420859, 18.16494132, 14.31856533, 17.48454134,
    19.70450889, 16.15431485, 14.97920007, 12.75705767, 21.13982655,
    23.76846867, 20.43796706, 17.5593216 , 13.81091458, 19.4130765 ,
    22.30718067, 18.30679605, 18.73435888, 21.1085248 , 16.17991617,
    17.66907561, 9.3648496 , 12.53151174, 18.74196939, 14.72622698,
    21.91666941, 10.68175022, 28.06536912, 16.92750333, 10.48199841,
    16.95819675, 11.6035696 , 17.37937365, 12.65895274, 11.54480806,
    18.3616206 , 18.02565635, 15.90571496, 6.96905143, 23.91371845,
    18.72841836, 2.36636948, 15.66448126, 19.13919071, 14.37065233,
    14.82159192, 13.72377931, 16.78926541, 20.13959017, 16.77379021,
    14.84332182, 17.34148733, 18.78528991, 7.46478532, 21.50181241,
    7.9833104 , 17.80479141, 16.70124722, 13.64582571, 13.577898 ,
    16.37998434, 19.03837668, 16.89253034, 20.42677538, 11.88847021,
    11.38631853, 15.50082332, 16.7030249 , 16.088621 , 12.51561343,
    15.73055771, 19.48992889, 13.06485701, 8.0678333 , 18.05531125,
    5.43515846, 19.04760736, 7.879961 , 20.12691794, 8.43035117,
    17.22251733, 8.03678616, 16.0078554 , 16.15014473, 8.21224197,
    19.38089222, 9.01029769, 11.26062042, 14.76521656, 17.35078069,
    22.80520652, 14.46913352, 17.42879149, 13.37647894, 17.25338735,
    18.73637238, 2.88421749, 20.40011706, 10.39826822, 15.05082296,
    19.06963941, 16.91706731, 13.82272106, 7.27754931, 16.11283426,
    15.5246287 , 13.81157399, 6.09658837, 15.6001777 , 18.92162163,
    13.38838482, 12.3894269 , 25.61593369, 14.51006631, 24.07157909,
    16.8478554 , 19.06337918, 6.89606982, 15.89648191, 9.94890574,
    4.1741199 , 19.96662183, 22.11552452, 20.07915682, 11.81127282,
    10.01155602, 16.06106413, 13.72389102, 13.58895892, 6.38356799,
    15.51871295, 18.04894363, 6.91148171, 15.76145194, 11.06726095,
    15.0972117 , 13.89722476, 17.2514969 , 13.71947839, 15.46657072,
    9.57084451, 8.69629316, 18.11964659, 13.78259735, 25.01368229,
    9.83800798, 9.04644566, 9.01788547, 13.94342442, 19.78553559,
    14.88336783, 7.98179993, 12.39448036, 17.1408828 , 19.33147132,
    14.05125452, 17.23008172, 13.65371068, 16.17567752, 12.23122378,
    12.10680811, 2.95619838, 6.89529116, 15.51517282, 15.19482832,
    12.01639161, 18.7831425 , 17.0239132 , 1.38190082, 13.69724912,
    13.06217886, 26.94699552, 22.59459457, 11.97867369, 13.93633583,
    17.10552488, 22.58992482, 19.40934193, 19.53641763, 15.88442231,
    7.9295681 , 21.77780904, 12.47072318, 13.81039032, 17.39736673,
    13.15453916, 21.36911849, 10.70201259, 10.59387373, 12.65426619,
    11.54376933, 13.14155316, 16.87773098, 11.76657509, 14.89503279,
    11.12283823, 21.28503492, 19.51000396, 16.66250962, 12.52950223,
    20.49618371, 16.8304768 , 13.58145978, 5.67632775, 12.51501766,
    16.40642439, 17.349106 , 7.89876048, 23.19479679, 10.2073971 ,
    14.0566871 , 14.78658926, 20.44095559, 15.54838402, 14.89340323,
    12.12392313, 8.92467267, 12.74334742, 17.47857181, 19.19866611,
    2.45721744, 8.89357759, 8.14078952, 20.12140264, 13.08791183,
    15.15808184, 11.52595765, 9.67495873, 8.53996197, 14.04442005,
    22.79638213, 13.1821865 , 12.72650507, 9.90846988, 11.41972578,
    17.93019223, 17.29881884, 12.55815741, 14.25266947, 10.33093622,
    7.142058 , 21.69019735, 17.25592536, 13.08063266, 8.6764044 ,
    10.24371983, 15.41889379, 4.28811294, 11.39411962, 26.56646754,
    16.96888119, 18.83606664, 15.01419964, 15.34971026, 22.02537937,
    4.36119692, 25.28447139, 10.48726479, 13.59826026, 14.06848502,
    12.99063847, 16.78391206, 9.74175223, 19.30650068, 22.54410113,
    24.98914811, 9.94762802, 21.40109447, 13.6695364 , 7.72764777,
    9.64404477, 11.17475083, 12.60055258, 20.97721358, 23.34476622,
    18.61854549, 15.52419453, 18.91436655, 9.62666948, 10.61228808,
    18.06891452, 19.51675254, 13.23077434, 19.00453996, 13.32899195,
    12.26702829, 15.6820842 , 8.11843937, 21.44353167, 15.52251699,
    11.4997531 , 24.72088535, 16.28930122, 8.0863221 , 14.2955109 ,
    7.17201489, 13.87547583, 17.67027528, 19.13974024, 22.68693614,
    24.18678422, 6.06103468, 24.76111537, 10.97781017, 15.81552381,
    10.84972314, 21.14140714, 13.76751962, 6.04277574, 24.58010336,
    8.68660216, 16.87910212, 26.79462555, 16.53919855, 12.56473841,
    12.48541333, 14.29182684, 10.48183018, 17.41734179, 10.97468455,
    11.04737238, 11.98624708, 6.25940958, 14.55275986, 10.96969175,
    14.44198921, 12.22024554, 21.06729722, 18.63578895, 15.01203526,
    9.78234677, 12.69823694, 18.53826221, 18.33718908, 8.67841207,
    12.40316973, 6.25257103, 13.12125998, 23.65467315, 8.48692567,
    16.48741407, 22.88008283, 9.74399847, 24.23586658, 20.85856245,
    6.93278193, 9.39064606, 11.74417199, 17.26023393, 17.4899952 ,
    15.60605781, 17.23917663, 16.29546289, 10.05711149, 7.27520158,
    13.98169832, 14.95431197, 15.24916955, 14.78272085, 21.01423717,
    11.47976526, 16.05894889, 16.30783588, 11.30069306, 21.44509951,
    21.12234178, 13.63871927, 8.67404016, 19.55244501, 10.47571836,
    21.03142778, 19.22024405, 17.56288251, 11.91033324, 11.17856874,
    11.01553264, 14.59588468, 8.70018864, 12.13660946, 24.77501267,
    10.5752547 , 8.6157514 , 6.26227458, 14.93877643, 21.75858592,
    17.27632436, 13.10800654, 21.44729017, 11.76678708, 21.22406953,
    16.94976341, 5.29558133, 21.19612368, 9.19780541, 18.17468954,
    16.2252154 , 19.59557946, 11.66578002, 19.06531132, 21.36638746,
    20.6541794 , 15.53407109, 14.31871485, 8.88234657, 19.95083641,
    15.33807678, 23.35312598, -0.41594355, 12.99684309, 17.81847784,
    8.65620742, 11.11906853, 14.72213943, 10.96787938, 19.0607508 ,
    15.06548159, 10.73352375, 7.80835499, 18.45434514, 10.94886255,
    17.02581022, 15.74533205, 16.83597387, 15.6272432 , 15.07400084,
    21.43340505, 19.8596281 , 15.10743665, 9.8524759 , 18.4157017 ,
    8.71576747, 8.81978059, 18.74270385, 20.19611499, 7.78305738,
    11.12512739, 11.0320895 , 4.08279734, 19.50883865, 18.3420021 ,
    16.38436628, 15.41935401, 14.88358696, 21.28094706, 8.07498229,
    5.44891281, 22.96052191, 4.82706329, 18.64935207, 6.81372616,
    21.48792701, 10.81966699, 16.51777675, 13.66587892, 5.15167454,
    19.6746364 , 18.92921522, 11.80793426, 15.99329862, 13.5428769 ,
    17.09127653, 18.0650194 , 16.9966228 , 15.88075782, 10.01499427,
    15.53643766, 14.82116696, 19.64805793, 13.38260529, 17.55275748,
    12.79123029, 1.60388552, 9.64273317, 14.10328556, 12.80516354,
    16.13765219, 24.82846188, 12.40167473, 14.37984687, 7.17152562,
    3.57487493, 18.68028442, 22.02231231, 13.08430578, 15.36424363,
    12.58209423, 19.16279834, 15.5310864 , 6.74056615, 18.95227059,
    9.62725175, 24.77371694, 18.72404572, 22.33711919, 13.33348445,
    10.82508722, 9.09203216, 2.25354049, 11.87985931, 9.93989723,
    11.64604036, 13.04827512, 20.30953976, 12.18749003, 13.07841278,
    16.33515174, 18.03769259, 16.79215097, 25.2966099 , 25.94685352,
    5.69546044, 11.92172349, 19.8342691 , 12.6440724 , 20.28437939,
    16.35062192, 14.67498508, 18.03873384, 11.98190638, 12.48304321,
    17.18353178, 11.6280484 , 14.99820737, 18.62490662, 21.36806158,
    10.33361186, 20.65887684, 18.14897646, 13.90046949, 11.97019342,
    12.86450733, 14.79502629, 7.12492396, 14.02432214, 7.74633751,
    20.42791153, 4.51691996, 12.45499258, 26.46562207, 25.43928357,
    16.02156583, 15.77301938, 11.19124392, 20.2017068 , 11.38777201,
    15.18199219, 13.06922751, 10.84513727, 16.72115341, 18.10468922,
    3.27337482, 15.77864477, 11.69318446, 16.11939922, 5.75250131,
    11.70259621, 9.96164663, 14.04692601, 16.66432923, 13.02730275,
    22.14321073, 9.97324488, 20.89977249, 16.61452685, 14.98716636,
    24.34831533, 12.64388541, 24.29123835, 18.62064405, 14.92635478,
    20.6628145 , 12.35438856, 16.62651241, 15.23094509, 15.17337696,
    6.55103708, 19.01998175, 23.25536204, 17.41528444, 21.16583531,
    18.9232849 , 19.15163022, 7.24348554, 10.57811529, 19.75374939,
    18.20943943, 22.28176618, 18.12091144, 12.23462022, 25.14515739,
    13.50928872, 8.66583537, 15.73187863, 15.96399654, 12.59117191,
    23.55583777, 17.89899462, 18.94571775, 11.52067712, 13.39007944,
    12.59774377, 11.15893922, 10.95135673, 14.42674691, 17.96761055,
    16.49122727, 12.35296522, 15.12034443, 15.74986747, 12.51710365,
    9.03581021, 13.25291267, 10.15981987, 25.01072793, 18.97541121,
    19.75442295, 15.72658347, 15.0584492 , 17.99054063, 5.09522099,
    12.27876186, 16.19625502, 11.07278001, 20.34912201, 13.00536634,
    16.99162583, 13.84421155, 14.38223744, 14.4279466 , 20.38561836,
    11.8408168 , 13.61657858, 20.71889558, 13.34126163, 14.15019112,
    25.77991025, 22.55302383, 19.96159611, 13.83428248, 10.01061803,
    12.17573564, 12.90200549, 13.5309241 , 19.83578067, 9.19966323,
    15.90839431, 10.42371807, 13.24996161, 11.84023659, 2.7949252 ,
    18.58428929, 14.08771667, 11.87739049, 12.94936314, 5.72137785,
    9.00511033, 24.56904689, 12.63663553, 17.76632913, 23.15421102,
    17.48732613, 15.18508386, 16.55137541, 21.34679622, 16.29028048,
    11.45359196, 20.79345061, 2.00181134, 15.79546808, 20.83970512,
    22.25406941, 10.11771432, 8.67460536, 22.40106521, 8.87171 ,
    15.65385265, 11.95693078, 17.83327425, 9.60459978, 8.27386886,
    13.12833899, 11.16273179, 19.53131749, 23.54517063, 24.42752656,
    23.96310917, 18.4784533 , 7.23297108, 10.54061606, 20.86058868,
    11.84239435, 18.31885798, 11.17861973, 10.97931156, 16.58560191,
    9.07837253, 15.33024139, 23.10263136, 14.38242525, 20.74808168,
    14.23372606, 15.70755858, 21.23669843, 1.35217317, 12.37976423,
    7.14600676, 18.39477579, 17.74507314, 18.47339341, 15.85955812,
    12.03810285, 19.7152867 , 15.52989343, 9.58677829, 12.8273546 ,
    13.12251889, 11.9852327 , 9.64979431, 4.67254736, 5.83485027,
    25.58650984, 22.28051372, 10.58979922, 18.30552752, 13.38469023,
    15.49887756, 18.9906719 , 15.28172592, 13.98672976, 22.84162786,
    11.16412929, 28.13020788, 14.53176387, 10.58195681, 13.62227215,
    19.39882903, 16.4404991 , 16.22472679, 21.69188583, 9.39591894,
    13.51732061, 12.43309456, 24.88460179, 18.21701532, 12.22188839,
    17.66401711, 18.73947878, 19.96433349, 12.44923092, 16.2503667 ,
    13.93141598, 20.68562248, 13.22824968, 14.49476981, 14.65557226,
    13.50932288, 18.78651139, 13.11609163, 13.72922394, 5.48391225,
    21.74546083, 4.54749793, 9.61640779, 12.76025987, 16.6814269 ,
    7.54157478, 14.12360955, 20.48599741, 7.25144564, 18.90874243,
    18.4448861 , 9.92069343, 16.25574177, 6.89835745, 13.93865526,
    21.31573413, 13.36223344, 15.66061316, 19.88795267, 17.3822145 ,
    18.74051049, 18.76796461, 4.8938116 , 15.55699742, 13.40461 ,
    15.95881726, 18.13730597, 24.84545955, -0.18746347, 15.51857936,
    14.85838324, 9.53991868, 8.24792235, 14.38302382, 16.59971307,
    19.10383007, 16.70314952, 14.83957597, 19.67174747, 21.01421162,
    16.47244826, 11.66594006, 17.90942654, 12.45942559, 11.75413215,
    15.8393784 , 16.96650233, 21.34297276, 16.89814547, 17.18400988,
    23.06562578, 9.31042315, 17.07230418, 14.9523615 , 15.95823228,
    21.05921299, 16.08593307, 19.09498751, 10.39794857, 25.96392485,
    14.69617158, 17.66141256, 10.20026414, 6.2382827 , 16.86058806,
    19.25205008, 13.70010653, 2.27012525, 16.92507514, 24.39321811,
    10.85770341, 23.02441749, 19.2417343 , 19.05590996, 22.87654077,
    20.41296773, 23.48198919, 16.00712785, 7.06656844, 15.13328042,
    12.70216947, 7.8267746 , 23.43791089, 28.6641215 , 14.95792843,
    10.89927121, 8.22974538, 6.62927352, 10.62186059, 12.56804649,
    13.18951132, 14.61382172, 23.37917646, 20.56671153, 16.86438089,
    18.11011443, 20.30088321, 17.27765895, 7.96486177, 9.15479929])

nd2 = np.random.normal(loc=5, scale=1, size=1000)
nd2
  • 输出

    array([4.16357325, 5.62772375, 3.9552129 , 5.01722184, 5.94728292,
    3.87611474, 6.40455754, 7.46665515, 3.38515994, 5.34430971,
    3.92116982, 5.26760858, 3.87753152, 4.91594112, 2.28170611,
    5.22466842, 4.24448323, 5.5262917 , 5.51089455, 6.09550044,
    6.8681638 , 4.88041697, 4.89141158, 4.26124332, 5.4022748 ,
    4.61356982, 4.62460457, 7.67978794, 4.57731853, 6.67464937,
    5.10280295, 4.33677994, 4.19373832, 5.36394475, 4.27075858,
    5.39031978, 4.30670864, 3.93891792, 6.19342666, 4.07486768,
    6.27780597, 4.55468073, 6.73625441, 5.86779949, 5.49083393,
    4.58853995, 5.6148867 , 3.48363662, 6.63894092, 5.22175345,
    4.39575909, 4.6296257 , 5.13293428, 4.63102278, 5.83887074,
    5.23785433, 5.8753402 , 3.73502303, 5.15459362, 4.57097034,
    5.67559993, 4.69832925, 5.65150331, 4.33270153, 3.92274046,
    5.70642851, 5.60828203, 4.59928909, 4.16696389, 5.27554203,
    6.56415018, 5.11148937, 5.33306229, 4.79096096, 7.14275288,
    3.24127949, 5.42305971, 4.8503601 , 4.73999867, 3.30017711,
    5.48859061, 8.6720081 , 4.61849386, 5.82255506, 4.94013434,
    4.29599778, 3.64307498, 5.91702747, 4.53273311, 2.86494732,
    4.83081915, 4.66762299, 5.51913047, 4.86923194, 5.64247402,
    6.92941377, 5.80016722, 4.71514671, 4.36175335, 5.29760305,
    4.03054667, 5.77336301, 4.27461778, 5.39664654, 2.95356186,
    5.69516542, 5.65799556, 5.59469922, 6.1820571 , 3.33644612,
    5.01553752, 5.61859069, 5.76889055, 5.33857628, 4.44932627,
    5.44414466, 6.69054537, 4.95445522, 3.93424904, 6.14749563,
    5.1360424 , 4.9205245 , 6.27270956, 3.402828 , 6.63289999,
    4.53090779, 4.06289069, 5.68322406, 4.82075541, 4.18470219,
    4.23731251, 5.784845 , 4.69988419, 5.60999033, 3.89867943,
    4.91213246, 6.32055125, 3.32742804, 4.387534 , 4.22955403,
    5.10986226, 5.31619754, 5.26842713, 4.30329285, 4.02172716,
    5.12122162, 5.74783566, 4.89342586, 4.14319473, 4.89207417,
    5.17976012, 4.92222856, 4.41448012, 6.11759185, 6.20346597,
    6.30937222, 4.45736507, 4.19464601, 5.95110871, 5.39087317,
    4.56342672, 5.41105951, 5.19021551, 4.44773853, 6.43024933,
    4.2240709 , 3.10760838, 4.10843011, 3.49803467, 4.13008625,
    4.93954846, 5.36686046, 4.94802037, 5.92916376, 3.6722152 ,
    5.59956637, 2.26681606, 4.98058069, 5.52226543, 4.3678841 ,
    5.79127271, 7.01911131, 5.54222329, 5.1736914 , 5.12307703,
    3.64086435, 4.49529974, 3.09617049, 5.23362009, 4.83003444,
    5.97855068, 4.90465821, 3.3488062 , 5.68806677, 3.10608318,
    3.59533022, 4.1582079 , 5.42337516, 5.18032938, 3.80619133,
    6.16036382, 7.10779899, 5.79528339, 4.20739267, 5.7849504 ,
    6.35741234, 4.87889289, 4.67202464, 5.59772812, 3.89601316,
    3.81930584, 3.86334162, 2.12820156, 6.03205986, 3.93786607,
    4.69154114, 5.01000487, 5.48795451, 5.64960885, 3.28107906,
    6.44071533, 5.84515172, 3.77795634, 4.1543535 , 4.76779398,
    6.46011012, 4.20959715, 6.12791645, 3.13111379, 6.32404882,
    4.01307035, 7.04022176, 5.88297238, 4.77726627, 5.81734169,
    4.5834276 , 4.32792513, 4.78572659, 6.2394519 , 4.95323565,
    3.76792869, 5.04695662, 4.6782468 , 4.26210285, 2.68574935,
    4.87784877, 4.16379962, 4.89492512, 5.29077423, 6.63540688,
    5.91601612, 5.79836639, 4.46454219, 5.59057577, 5.64159953,
    3.73283891, 5.76728448, 5.59155539, 4.62458597, 4.59258478,
    4.26568473, 4.13624814, 5.45664658, 3.20651961, 4.408289 ,
    5.91191617, 6.42389566, 5.3310918 , 5.16260576, 5.08216533,
    4.23972288, 5.4333913 , 5.52618567, 3.53352888, 6.18801528,
    5.09545601, 5.47251721, 4.52145652, 4.48497876, 6.13442928,
    5.46427115, 2.29920696, 5.96166798, 6.86041016, 4.64935911,
    4.05211169, 5.22005598, 5.03828418, 3.11720228, 6.5067688 ,
    4.16690752, 4.31972409, 7.66002522, 6.29075211, 6.54033656,
    4.73315998, 4.48450546, 6.9592562 , 3.47862276, 5.30881486,
    4.82692032, 5.57301637, 4.19444764, 5.20859468, 4.50189408,
    4.34951492, 4.63316205, 5.55343187, 3.70853791, 6.23107709,
    4.27639353, 3.43623509, 3.70621964, 4.20023314, 4.38700297,
    6.0247284 , 4.10301279, 1.73386839, 3.8811813 , 5.95340252,
    3.32468732, 5.33303337, 5.91283534, 6.00924919, 3.6032262 ,
    4.59126025, 4.29693335, 6.78247321, 7.06582257, 3.79111525,
    3.78370384, 5.66027207, 4.96055824, 5.70154465, 4.65007777,
    4.5035654 , 5.61986658, 4.58564207, 6.36564777, 5.77875425,
    4.70467287, 5.17829573, 5.82797022, 3.48804111, 5.03259832,
    3.43797394, 5.4791678 , 4.29187316, 5.43345946, 2.97895257,
    4.17941581, 6.46108478, 4.16631229, 3.82299511, 4.88063746,
    5.99597437, 4.2566243 , 5.61937518, 4.45414788, 5.92053089,
    3.49520851, 7.42316601, 5.29250923, 4.28792588, 7.36984588,
    4.04040733, 4.26886281, 3.77000458, 4.56072738, 4.63605669,
    4.95127483, 3.53601143, 3.72015063, 4.80868551, 3.67868907,
    4.44574129, 5.95172132, 5.8080427 , 5.30838712, 5.24493577,
    5.19000903, 4.74896707, 5.44316688, 3.96915616, 4.68391686,
    7.5726147 , 4.91730717, 5.45240095, 5.9629974 , 2.47171197,
    3.69924953, 4.68509439, 4.43821199, 4.99523136, 4.40460386,
    4.96303014, 4.71679413, 4.57039619, 5.33357121, 5.15079823,
    6.49139364, 3.86845536, 4.98871996, 3.7839628 , 4.273599 ,
    5.95315578, 3.74863635, 4.11147589, 5.53989483, 4.80278295,
    4.90408198, 6.95778251, 5.19522392, 5.5683528 , 5.98498926,
    5.37911824, 6.28442773, 6.06750223, 6.05986868, 4.71704863,
    3.99302845, 4.95290817, 2.49207559, 4.87651285, 5.15237529,
    3.49276428, 4.99630332, 4.53049613, 4.93972966, 5.14459539,
    6.43671059, 3.6443922 , 3.62322561, 4.93096589, 4.03285254,
    5.12044196, 4.7470407 , 5.05114539, 4.98548726, 3.84715856,
    4.38895987, 5.02571047, 4.27669533, 5.80634551, 3.74243646,
    5.74672054, 4.30977187, 5.07860367, 5.36591131, 6.49938734,
    4.5655998 , 6.72658129, 5.24367282, 4.48870661, 4.71499478,
    6.42220582, 6.1114622 , 5.48564748, 5.57308475, 6.15891602,
    5.9758781 , 5.85915079, 3.91862602, 2.12821654, 3.87280873,
    3.66024374, 4.50284895, 5.21899411, 5.38545771, 7.16073212,
    6.59658302, 5.00053088, 6.18178777, 3.63806579, 5.01496147,
    5.90991082, 6.97094723, 4.83097336, 5.30165196, 4.661253 ,
    5.86529545, 5.02720143, 4.84598703, 4.33055532, 3.21912353,
    4.45419335, 4.77518495, 5.14216553, 6.36418059, 6.26262535,
    4.59296046, 5.03454922, 6.00619901, 4.18621875, 4.91093635,
    3.29685616, 3.79522521, 6.9291816 , 6.4750611 , 4.89884067,
    5.78038694, 4.02603052, 5.70340682, 3.66391833, 6.78237457,
    5.45288145, 4.96589685, 4.6344795 , 3.73365996, 4.93605937,
    6.30098803, 6.15180329, 3.62245617, 4.31080067, 4.89444726,
    4.46041046, 6.46807424, 6.69713398, 5.37660044, 3.82659646,
    5.74103172, 4.49821583, 5.42852421, 2.79327574, 4.5965607 ,
    4.89687084, 5.06394347, 3.76460552, 5.573225 , 3.72458122,
    3.05024013, 5.17225729, 4.97343936, 4.62345663, 6.6316699 ,
    3.89960346, 4.6849749 , 5.38701991, 5.70404233, 4.69017532,
    5.876532 , 4.74405497, 5.44952709, 4.89016766, 6.21227894,
    5.01569238, 6.63113838, 6.08459047, 4.42572288, 4.23403788,
    4.58841822, 5.13660595, 3.78069157, 4.95872333, 5.94666079,
    6.99971432, 5.57830349, 5.19189896, 3.35896715, 5.36527688,
    5.72545598, 3.56843588, 4.57611497, 5.73088564, 6.5592119 ,
    5.78983926, 4.76242211, 5.51854665, 5.37074764, 4.80702089,
    5.68180577, 6.68828184, 3.97815013, 3.86441813, 5.50323984,
    6.2954246 , 6.81212302, 4.34765753, 5.38604839, 3.57545063,
    4.2153493 , 6.40788719, 5.04704768, 5.71393966, 5.46348939,
    4.36487098, 5.72428558, 3.64913714, 5.09075194, 5.10808268,
    4.53924537, 3.95084051, 5.80156225, 3.95139318, 6.40185987,
    5.10152297, 5.9083863 , 6.77868656, 4.93491808, 6.87341423,
    5.00020607, 5.37300145, 4.94257872, 4.05335049, 5.65874513,
    7.05585192, 3.07188578, 6.47767778, 5.15548659, 6.61809565,
    4.63849661, 4.00552794, 7.4990428 , 5.55064212, 3.95348289,
    6.77047746, 5.17235527, 4.08495527, 5.69626916, 5.27694599,
    6.5455655 , 5.03440539, 3.79535853, 3.88216299, 5.66687272,
    5.42595946, 3.98806174, 5.38019678, 4.85600623, 6.60249457,
    4.43772189, 7.31528327, 5.45132995, 6.46431198, 5.05253691,
    5.30463532, 5.59352554, 4.46884691, 4.4371996 , 5.15883358,
    5.31511306, 6.16704347, 6.77732211, 6.10656385, 5.15621815,
    5.46977566, 4.51159292, 3.94227825, 5.31667496, 5.67738107,
    5.28083731, 6.15320115, 3.42747691, 5.72918766, 5.91724691,
    4.83514468, 4.19425714, 4.59213095, 4.23491379, 4.44307898,
    4.85002062, 3.68601655, 3.34430793, 4.44669012, 5.21651207,
    4.39399604, 6.1542975 , 5.18053303, 4.56594122, 5.82571705,
    5.27565334, 5.06206244, 3.30770505, 3.91693396, 6.98565476,
    3.4926006 , 5.1485241 , 6.21774637, 4.28257422, 6.52841365,
    4.62857032, 4.23136567, 3.82420662, 3.74394523, 5.0192126 ,
    5.16862418, 5.14095923, 6.43276907, 5.84756387, 5.30127721,
    5.2689874 , 3.70364905, 6.55048716, 6.30709324, 3.52150307,
    5.95410199, 5.04133322, 4.25300762, 4.66354312, 5.79064765,
    4.40433573, 4.45537903, 5.89482175, 5.87593757, 5.68857767,
    4.86160107, 4.19193785, 5.17753232, 3.9977945 , 4.9442369 ,
    6.07835905, 5.02438589, 6.22749511, 5.24584004, 3.63975901,
    4.68905444, 4.78441954, 6.4812497 , 3.69047389, 4.88141576,
    5.79649154, 5.04203019, 5.83245323, 3.9658845 , 3.81575922,
    4.46942339, 3.53117414, 4.055562 , 5.39131185, 4.68754333,
    4.53087311, 4.20410031, 6.27197988, 6.85397581, 4.85151187,
    5.02835855, 5.27851599, 5.17836394, 4.06129462, 4.4375603 ,
    7.08798937, 5.5102644 , 3.81629454, 5.56699322, 5.10566699,
    4.86234081, 3.8165508 , 4.40874826, 3.41589827, 4.29403851,
    2.93109546, 4.71142032, 4.21331257, 3.94113757, 4.79319043,
    4.51598912, 5.84379645, 5.3311838 , 5.62069354, 4.56616148,
    3.78008828, 4.12170311, 3.47164841, 6.45149467, 7.07439161,
    5.15775446, 4.99605674, 3.68084454, 4.81140656, 5.31432729,
    5.44268601, 4.28726986, 7.01091418, 3.61892038, 4.94733244,
    4.32424272, 4.0247057 , 5.80500818, 5.6972797 , 5.65320886,
    6.39972657, 3.3030268 , 5.06080049, 2.94627967, 5.61769648,
    4.40227402, 3.50383268, 5.70211839, 4.11933258, 5.08979386,
    4.2676073 , 4.36874 , 5.60255516, 4.0650777 , 3.69051336,
    6.11521605, 5.13445683, 5.62023694, 5.67238026, 4.62919193,
    6.29114967, 5.76445703, 5.33025919, 3.04761616, 5.74038603,
    6.90571771, 4.88536199, 4.37548828, 4.03133291, 3.98986754,
    5.18311004, 3.60657778, 4.68029741, 6.77247176, 4.05498816,
    5.81458552, 5.68999805, 4.49644808, 7.23364798, 4.78154564,
    4.30177813, 4.15465457, 4.53973133, 5.27878305, 4.19131211,
    3.85860472, 6.69376269, 6.05901324, 5.08240134, 4.48290616,
    4.74503704, 4.56161557, 4.76352048, 5.58432118, 6.72418505,
    4.58035456, 6.77123094, 5.92590072, 5.92009114, 3.80774064,
    7.94398176, 4.16758862, 4.72331011, 5.78362765, 3.21055947,
    5.76164498, 6.4397337 , 4.44481261, 3.33294915, 6.01488334,
    6.81204549, 2.42044915, 4.4403678 , 5.47945654, 4.07128056,
    5.30664905, 6.41306649, 6.01389555, 4.4295987 , 7.10258643,
    4.65877207, 4.96947419, 5.99469993, 6.2051869 , 5.70905434,
    4.61033172, 5.73426407, 4.35125811, 4.53512318, 3.95150925,
    6.78339022, 4.30245366, 5.76650037, 5.15131781, 5.52825882,
    6.8477806 , 5.18687599, 4.53926858, 7.22687264, 5.63437343,
    5.86334083, 5.63117323, 3.69713011, 6.21429763, 4.22379533,
    4.58421616, 4.20044833, 4.88802996, 6.11973732, 4.91362631,
    5.99532401, 5.23794912, 4.71085432, 5.65410814, 5.13094576,
    4.77431904, 5.86111277, 5.20227685, 5.20100846, 3.51333093,
    5.61254166, 5.17714846, 4.34431496, 4.04362843, 5.32914837,
    4.45681308, 5.11813353, 6.10079781, 5.20358212, 3.62758645,
    5.52902048, 4.01751996, 5.43673173, 4.99834851, 4.23534757,
    4.06770858, 5.3580892 , 4.40710573, 5.43241561, 4.60487781,
    6.48997503, 3.70168528, 5.23138227, 6.23080636, 4.74835939,
    3.80599272, 3.29946934, 6.34557388, 4.93872346, 6.47946449,
    6.41594052, 6.73218324, 3.04289943, 4.15115282, 5.10402299,
    4.50899173, 4.5168367 , 4.65360808, 6.01393715, 6.4251474 ,
    4.46519491, 5.05383961, 4.87180319, 3.27026279, 5.01396013,
    4.34003878, 5.76289112, 5.32605534, 4.25412225, 5.12852744,
    3.58240371, 3.23632483, 5.32664125, 4.8313264 , 3.84089868,
    6.76103641, 4.67086501, 4.974855 , 5.90858545, 4.11203174,
    3.47689329, 4.59854682, 3.79011385, 5.67780065, 4.04810594,
    5.67560683, 4.41887216, 5.47302958, 3.9217647 , 4.22237868,
    5.03075115, 5.40360709, 5.63968412, 5.95374395, 5.32658004,
    5.41877689, 4.8850843 , 4.61497329, 4.62041275, 5.04798966,
    5.41226352, 4.7350273 , 2.27956637, 3.28210161, 4.90247233,
    5.97151358, 3.03264944, 4.59598116, 5.61863583, 5.10906549,
    5.896816 , 5.0875292 , 6.55366492, 6.06902742, 4.61753771,
    4.35189183, 4.70411494, 6.3450411 , 4.79457834, 4.91535206])

nd3 = np.concatenate([nd1, nd2])
nd3
  • 输出

    array([16.50002167, 21.95871306, 22.75958416, …, 6.3450411 ,
    4.79457834, 4.91535206])

s8 =Series(nd3)
s8
  • 输出

    0 16.500022
    1 21.958713
    2 22.759584
    3 17.311623
    4 21.113620
    5 18.265816
    6 14.367717
    7 14.041937
    8 24.472507
    9 12.154959
    10 9.272915
    11 12.313423
    12 10.209241
    13 26.501067
    14 15.738136
    15 15.967169
    16 16.691080
    17 17.470095
    18 23.255858
    19 3.750134
    20 25.121658
    21 9.213113
    22 20.805368
    23 15.541248
    24 28.903056
    25 20.532467
    26 11.801656
    27 21.608022
    28 11.175858
    29 16.327408

    1970 5.030751
    1971 5.403607
    1972 5.639684
    1973 5.953744
    1974 5.326580
    1975 5.418777
    1976 4.885084
    1977 4.614973
    1978 4.620413
    1979 5.047990
    1980 5.412264
    1981 4.735027
    1982 2.279566
    1983 3.282102
    1984 4.902472
    1985 5.971514
    1986 3.032649
    1987 4.595981
    1988 5.618636
    1989 5.109065
    1990 5.896816
    1991 5.087529
    1992 6.553665
    1993 6.069027
    1994 4.617538
    1995 4.351892
    1996 4.704115
    1997 6.345041
    1998 4.794578
    1999 4.915352
    Length: 2000, dtype: float64

# 密度图
s8.plot(kind='kde')
<matplotlib.axes._subplots.AxesSubplot at 0xda06e48>

这里写图片描述

s8.hist(bins=70)
<matplotlib.axes._subplots.AxesSubplot at 0xd8187f0>

这里写图片描述

s8.plot(kind='kde')
# 怎么解决密度线趴下来的问题
# normed 统一的,将数据归一化
s8.hist(bins= 70, normed=True)
<matplotlib.axes._subplots.AxesSubplot at 0xd568a58>

这里写图片描述

## 散布图
df = DataFrame(np.random.randint(0, 150, size=(10, 3)),columns=['Python', 'Java', 'PHP'])
df
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaPHP
050148144
14310498
21613991
3375479
4120111147
5290132
610433130
7593282
8391752
91474929
df['C++'] = df['Python'].map(lambda x : 0.7 * x + 20)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
PythonJavaPHPC++
05014814455.0
1431049850.1
2161399131.2
337547945.9
4120111147104.0
529013221.4
61043313092.8
759328261.3
839175247.3
91474929122.9

散布图 散布图是观察两个一维数据列之间的关系的有效方法

注意是用kind=’scatter’ , 给标签columns

# scatter 需要x和y两个参数,作用是对比
df.plot(kind='scatter',x='Python', y='Java')
<matplotlib.axes._subplots.AxesSubplot at 0xf094be0>

这里写图片描述

df.plot(kind='scatter',x='Python', y='C++')
<matplotlib.axes._subplots.AxesSubplot at 0xfaccda0>

这里写图片描述

散布图矩阵,当有多个时,两两点之间的联系

函数:pd.plotting.scatter_matrix(),注意参数diagnol:对角线

pd.plotting.scatter_matrix(df, figsize=(12, 9))
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FE00198>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FE38C50>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FE5D860>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FE86550>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FE4A978>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FE4A7F0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FEF17F0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FF1B470>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FF4C160>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FF76550>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FFAD0F0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000000FFD9C50>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x00000000100137F0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000001002AC18>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000001007A9B0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x000000001008FE80>]],
dtype=object)

这里写图片描述

pd.plotting.scatter_matrix(df, figsize=(12, 9), diagonal='kde')
# 散点图可以让我们找到两列数据之间的关系
# 一,如果数据量太小,两列数据没有关系,加大数据量,又会形成关系
# 二,并不是说数据量越大,两列之间的关系就越明显,在数据过大的情况下,
# 关系会发生改变

最后

以上就是细心大船为你收集整理的pandas数据映射、聚合和绘图函数的全部内容,希望文章能够帮你解决pandas数据映射、聚合和绘图函数所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部