求点积时的两个向量一定要是单位向量,否则计算结果会大于Pi(正常范围是0到Pi)。
三、基于某点向某方向上投射指定距离后的坐标计算
代码:
float Len = FMath::Sqrt(100 * 100 + 100 * 100);
FVector Loc= FVector(100.f, 100.f, 0.f) + FRotator(0.f, 45.f, 0.f).Vector() * Len;
结果:
Loc = {X=200.f, Y=200.f, Z=0.f}
FRotator::Vector()对应的蓝图函数为GetRotationXVector
=================================
例子2:
float Len = FMath::Sqrt(100 * 100 + 100 * 100);
FVector Loc1= FVector(0.f, 0.f, 0.f) + FRotator(0.f, 45.f, 0.f).Vector() *Len;
FVector Loc2= FVector(0.f, 0.f, 0.f) + FRotator(0.f, 135.f, 0.f).Vector() *Len;
FVector Loc3= FVector(0.f, 0.f, 0.f) + FRotator(0.f, 225.f, 0.f).Vector() *Len;
FVector Loc4= FVector(0.f, 0.f, 0.f) + FRotator(0.f, 315.f, 0.f).Vector() * Len;
结果:
Loc1 = {X=100.f, Y=100.f, Z=0.f}
Loc2= {X=-100.f, Y=100.f, Z=0.f}
Loc3= {X=-100.f, Y=-100.f, Z=0.f}
Loc4= {X=100.f, Y=-100.f, Z=0.f}
四、如何检测某个点是否在多边形内部或者直线上
点在多边形内的判别方法
int pnpoly(int nvert, float *vertx, float *verty, float testx, floattesty)
{int i, j, c = 0;for (i = 0, j = nvert-1; i < nvert; j = i++)
{if (((verty[i] > testy) != (verty[j] > testy)) &&(testx< (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) +vertx[i]) )
{
c= !c;
}
}returnc;
}
Arguments
nvert: Number of vertices in the polygon. Whether to repeat the first vertex at the end has been discussed in the article referred above.
vertx, verty: Arrays containing the x- and y-coordinates of the polygon’s vertices.
testx, testy: X- and y-coordinate of the test point.
点在两点之间的直线上的判别方法
boolisLieOnLine()
{
dxc= currPoint.x -point1.x;
dyc= currPoint.y -point1.y;
dxl= point2.x -point1.x;
dyl= point2.y -point1.y;//point lies on the line if and only if (dxc * dyl - dyc * dxl) is equal to zero.
bool isCrossLine = dxc * dyl - dyc * dxl == 0;if(isCrossLine)
{if (abs(dxl) >=abs(dyl))return dxl > 0 ?point1.x<= currPoint.x && currPoint.x <=point2.x :
point2.x<= currPoint.x && currPoint.x <=point1.x;else
return dyl > 0 ?point1.y<= currPoint.y && currPoint.y <=point2.y :
point2.y<= currPoint.y && currPoint.y <=point1.y;
}return false;
}
参考
五、两个旋转矩阵(Rotation Matrix)相乘(Multiply)的几何意义
讲之前,先说下如果两个Rotation相加的意义,比如:
FRotator Rot1(0.f, 90.f, 0.f);
FRotator Rot2(90.f,0.f, 0.f);
FRotator Result= Rot1 + Rot2;
得到的结果FRotator Result(90.f, 90.f, 0.f),其意义是: 物体相对空间坐标原点的Rotation为(90.f, 90.f, 0.f),很好理解。
如果两个Rotation转换为Martix并相乘,比如:
FRotator Rot1(0.f, 90.f, 0.f);
FRotator Rot2(90.f,0.f, 0.f);
FRotator Result=( FRotationMatrix(Rot1) * FRotationMatrix(Rot2)).Rotator();
得到的结果FRotator Result(0.f, 90.f, 90.f),其意义是: 先将物体作Rot1旋转,即:Yaw方向(水平平面)旋转90度,然后再假设该物体相对坐标轴原点的旋转量为(0, 0, 0),即没有作任何旋转,但实际Rotation相对坐标轴原点为(0, 90, 0);然后再将物体进行Rot2旋转,即Pitch方向(垂直于(90, 0, 0)方向的平面)侧翻90度,因为侧翻90度前假设物体的Rotation是(0, 0, 0),所以侧翻时所在的平面不再是Yaw=90的平面(垂直于(0, 90, 0)方向),而是Yaw=0的平面(垂直于(90, 0, 0)方向)。没做相关配图,这段话理解起来有点绕,最好用空间思维想象下,可以用手掌比划。
实际应用:
比如空间中有两个物体:A和B,现在要将A旋转至与B相同的朝向,目前只知道A的相对世界坐标的Rotation Rw(90.f,0.f, 0.f)、B相对A(将A的Rotation当做(0, 0, 0))的Rotation Rr(0.f, 90.f, 0.f),求A旋转后的世界坐标Rotation。
此时的计算公式就是:
(FRotationMatrix(Rr) * FRotationMatrix(Rw)).Rotator()
注意:矩阵相乘时,两个乘数的前后位置不同则计算的结果也不同,比如上面例子,如果是( FRotationMatrix(Rot2) * FRotationMatrix(Rot1)).Rotator,则结果是Rotation(90, -90, -180)。
一个典型应用:以UE4为例,当角色移动时,不能将默认MoveForward的实参(比如(1.0, 0.f, 0.f))和MoveRight的实参(比如(0.0, 1.f, 0.f))传递给AddMovementInput,因为InputValue需要相对摄像机的朝向来计算,否则当按下W键,期望角色摄像机正对方向移动,但实际是侧向移动。此时就可以通过旋转矩阵相乘来获取当前摄像机朝向方向下的MoveForward和MoveRight方向。
FRotator AMyPlayerController::GetInputRotationInWorld()
{
FRotator Ret=FRotator::ZeroRotator;if (AMyCharacter* Player = Cast(GetPawn()))
{if(UCameraComponent* CameraComp = Player->GetFollowCamera())
{
FRotator InputRotLS= FVector(ForwardInputValue, RighInputInputValue, 0.f).Rotation();
FRotator CameraRotWS= FRotator(0.f, CameraComp->GetComponentRotation().Yaw, 0.f);
Ret= (FRotationMatrix(InputRotLS) *FRotationMatrix(CameraRotWS)).Rotator();
}
}returnRet;
}
Video Tutorials
Linear transformations and matrices | Essence of linear algebra, chapter 3
https://www.youtube.com/watch?v=kYB8IZa5AuE
六、抛物线Parabola movement
header
AStaticMeshActor* TestCube =nullptr;//throw speed
UPROPERTY(EditDefaultsOnly)
FVector StartForce= FVector(100.f, 100.f, 2000.f);//gravitational acceleration
float GravityAcclerator = -980.f;//accumulated movtion time
float AccumulateTime = 0.f;
cpp
voidATestTPGameMode::StartPlay()
{
Super::StartPlay();//finding the Actor in scene.
for (TActorIterator Iter(GetWorld()); Iter; ++Iter)
{if (Iter->GetName() == TEXT("Cube_2"))
{
TestCube= *Iter;break;
}
}
}void ATestTPGameMode::Tick(floatDeltaSeconds)
{
Super::Tick(DeltaSeconds);
AccumulateTime+=DeltaSeconds;//calculate gravitational speed in real time.
float ZSpeed = GravityAcclerator *AccumulateTime;//calculate summation speed of gravitational speed and throw speed.
FVector CurrSpeed = StartForce + FVector(0.f, 0.f, ZSpeed) ;//calculate movement distance in real time.
FVector MoveDist = CurrSpeed *DeltaSeconds;//set relative location.
TestCube->AddActorWorldOffset(MoveDist, true);
}
七、空间点到直线垂足坐标的解算方法
算法1
假设空间某点O的坐标为(Xo,Yo,Zo),空间某条直线上两点A和B的坐标为:(X1,Y1,Z1),(X2,Y2,Z2),设点O在直线AB上的垂足为点N,坐标为(Xn,Yn,Zn)。点N坐标解算过程如下: 首先求出下列向量:
由向量垂直关系(公式1)
点N在直线AB上,根据向量共线(公式2):
由公式2得(公式3):
把公式3式代入公式1式,式中只有一个未知数k,整理化简解出k(公式4):
把公式4式代入公式3式即得到垂足N的坐标。
二维空间
//二维空间点到直线的垂足
structPoint
{doublex,y;
}
Point GetFootOfPerpendicular(const Point &pt, //直线外一点
const Point &begin, //直线开始点
const Point &end) //直线结束点
{
Point retVal;double dx = begin.x -end.x;double dy = begin.y -end.y;if(abs(dx) < 0.00000001 && abs(dy) < 0.00000001)
{
retVal=begin;returnretVal;
}double u = (pt.x - begin.x)*(begin.x - end.x) +(pt.y- begin.y)*(begin.y -end.y);
u= u/((dx*dx)+(dy*dy));
retVal.x= begin.x + u*dx;
retVal.y= begin.y + u*dy;returnretVal;
}
三维空间
//三维空间点到直线的垂足
structPoint
{doublex,y,z;
}
Point GetFootOfPerpendicular(const Point &pt, //直线外一点
const Point &begin, //直线开始点
const Point &end) //直线结束点
{
Point retVal;double dx = begin.x -end.x;double dy = begin.y -end.y;double dz = begin.z -end.z;if(abs(dx) < 0.00000001 && abs(dy) < 0.00000001 && abs(dz) < 0.00000001)
{
retVal=begin;returnretVal;
}double u = (pt.x - begin.x)*(begin.x - end.x) +(pt.y- begin.y)*(begin.y - end.y) + (pt.z - begin.z)*(begin.z -end.z);
u= u/((dx*dx)+(dy*dy)+(dz*dz));
retVal.x= begin.x + u*dx;
retVal.y= begin.y + u*dy;
retVal.y= begin.z + u*dz;returnretVal;
}
算法2
计算p1、p2连成的直线上的离 q 点最近的点 f(即 q 点到直线 p1、p2的垂足坐标):
XNA实现
Vector3 p1 = newVector3(x1, y1, z1);
Vector3 p2= newVector3(x2, y2, z2);
Vector3 q= newVector3(x3, y3, z3);
Vector3 u= p2 -p1;
Vector3 pq= q -p1;
Vector3 w2= pq - Vector3.Multiply(u, Vector3.Dot(pq, u) /u.LengthSquared());
Vector3 f= q - w2;
UE4实现
FVector GetPerpendicularPointToLine(const FVector& PointStart, const FVector& PointEnd, const FVector&PointPerpendicular)
{
FVector Line= PointEnd -PointStart;
FVector PS= PointPerpendicular -PointStart;
FVector W2= PS - (Line * (PS | Line) /Line.SizeSquared());
FVector FootPoint= PointPerpendicular -W2;returnFootPoint;
}
UE4引擎提供的工具函数:
FVector UKismetMathLibrary::FindClosestPointOnLine(FVector Point, FVector LineOrigin, FVector LineDirection)
{const FVector SafeDir =LineDirection.GetSafeNormal();const FVector ClosestPoint = LineOrigin + (SafeDir * ((Point-LineOrigin) |SafeDir));returnClosestPoint;
}
参考
八、已知三点求平面方程、平面法向量和点到平面的距离
已知三点p1(x1,y1,z1),p2(x2,y2,z2),p3(x3,y3,z3),要求确定的平面方程。
关键在于求出平面的一个法向量,为此做向量p1p2(x2-x1,y2-y1,z2-z1), p1p3(x3-x1,y3-y1,z3-z1),平面法线和这两个向量垂直,因此法向量n:
平面方程:
a * (x - x1) + b * (y - y1) + c * (z - z1) = 0;
d= -a * x1 - b * y1 - c * z1;
平面方程2:
a * x + b * y + c * z + d=0;
代码:
//已知3点坐标,求平面ax+by+cz+d=0;
void get_panel(Point p1, Point p2, Point p3, double &a, double &b, double &c, double &d)
{
a= ( (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z) * (p3.y -p1.y) );
b= ( (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x) * (p3.z -p1.z) );
c= ( (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x -p1.x) );
d= ( 0 - (a * p1.x + b * p1.y + c *p1.z) );
}//已知三点坐标,求法向量
Vec3 get_Normal(Point p1, Point p2, Point p3)
{double a = ( (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z) * (p3.y -p1.y) );double b = ( (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x) * (p3.z -p1.z) );double c = ( (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x -p1.x) );returnVec3(a, b, c);
}//点到平面距离
double dis_pt2panel(Point pt, double a, double b, double c, doubled)
{return f_abs(a * pt.x + b * pt.y + c * pt.z + d) / sqrt(a * a + b * b + c *c);
}
UE4提供的工具函数:
/**
* Calculate the projection of a point on the plane defined by PlaneBase and PlaneNormal.
*
* @param Point The point to project onto the plane
* @param PlaneBase Point on the plane
* @param PlaneNorm Normal of the plane (assumed to be unit length).
* @return Projection of Point onto plane*/
static FVector FVector::PointPlaneProject(const FVector& Point, const FVector& PlaneBase, const FVector& PlaneNormal);
参考
最后
以上就是健忘手套最近收集整理的关于dot ue4_UE4 常用数学的全部内容,更多相关dot内容请搜索靠谱客的其他文章。
发表评论 取消回复