概述
声明:虽然肯定没人看,但是我要说明,里面的内容都是我从官方文档上抄的,仅作为个人复习之用,并非原创。
-
前一节我们学习了 Sobel 算子 ,其基础来自于一个事实,即在边缘部分,像素值出现”跳跃“或者较大的变化。如果在此边缘部分求取一阶导数,你会看到极值的出现。正如下图所示:
-
如果在边缘部分求二阶导数会出现什么情况?
你会发现在一阶导数的极值位置,二阶导数为0。所以我们也可以用这个特点来作为检测图像边缘的方法。 但是, 二阶导数的0值不仅仅出现在边缘(它们也可能出现在无意义的位置),但是我们可以过滤掉这些点。
Laplacian算子
- 从以上分析中,我们推论二阶导数可以用来 检测边缘 。 因为图像是 “2维”, 我们需要在两个方向求导。使用Laplacian算子将会使求导过程变得简单。
- Laplacian 算子 的定义:
- OpenCV函数 Laplacian 实现了Laplacian算子。 实际上,由于 Laplacian使用了图像梯度,它内部调用了 Sobel 算子。
//! applies Laplacian operator to the image
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
int ksize=1, double scale=1, double delta=0,
int borderType=BORDER_DEFAULT );
函数接受了以下参数:
- src 输入图像。
- dst: 输出图像
- ddepth: 输出图像的深度。 因为输入图像的深度是 CV_8U ,这里我们必须定义 ddepth = CV_16S 以避免外溢。
- kernel_size: 内部调用的 Sobel算子的内核大小
- scale, delta 和 BORDER_DEFAULT: 使用默认值。
最后
以上就是缥缈墨镜为你收集整理的opencv学习笔记--Laplace算子的全部内容,希望文章能够帮你解决opencv学习笔记--Laplace算子所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复