我是靠谱客的博主 愤怒蚂蚁,最近开发中收集的这篇文章主要介绍Mfcc+GMM训练性别检测器模型,达到识别音频性别的效果,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

主要技术:Mfcc+GMM

达到目的 : 识别音频中说话人的性别是男还是女的效果

项目的来源:国外(数据集是谷歌的,讲解资料来源于印度的两个哥们)

不足:识别率不高;男性大概是82%左右,女性是90%


数据集下载的地址://download.csdn.net/download/tian_jiangnan/12251687

代码讲解

第一部分、先后训练男、女模型

以下代码运行两次,第一次是source="D:\pygender\train\male"   第二次是source="D:\pygender\train\womale"

这个代码就是提取某类性别的音频的mfcc特征,然后注入GMM中生成模型就可以了;代码重点在于提取mfcc特征

import os
import pickle
import numpy as np
from scipy.io.wavfile import read
from sklearn.mixture import GaussianMixture
import python_speech_features as mfcc
from sklearn import  preprocessing
import warnings
warnings.filterwarnings("ignore")
def get_Mfcc(sr,audio):
    features=mfcc.mfcc(audio,sr,0.025,0.01,13,appendEnergy=False)
    features=preprocessing.scale(features)
    return features

#path to training data
source="D:\pygender\train\male"
##source="D:\pygender\train\male"  训练男的模型以后,再训练女的模型;
dest="D:\pygender\"
##如果有.wav文件那么就获取它的文件路径
files=[os.path.join(source,f) for f in os.listdir(source) if f.endswith('.wav')]
features=np.asarray(());

for f in files:
    sr,audio=read(f)
    vector=get_Mfcc(sr,audio)
    if features.size==0:
        features=vector
    else:
        features=np.vstack((features,vector))
#GMM模型


gmm=GaussianMixture(n_components=8,covariance_type='diag',max_iter=200,n_init=3)
gmm.fit(features)
#获取male这个名称
picklefile=source.split("\")[-1]+".gmm"
#写模型
pickle.dump(gmm,open(dest+picklefile,'wb'))

 

 两次运行结束以后;会生成.gmm文件

 

现在运行测试文件

可以先检测测试集中女性的识别率,如果男女音频都放在一起,就很难看得出来检测的识别率的高低

import os
import pickle
import numpy as np
from scipy.io.wavfile import  read
import python_speech_features as mfcc
from sklearn import  preprocessing
import  warnings
warnings.filterwarnings("ignore")
def get_Mfcc(sr,audio):
    features=mfcc.mfcc(audio,sr,0.025,0.01,13,appendEnergy=False)
    features=preprocessing.scale(features)
    return features


##path to testing data
sourcepath="D:\pygender\test\womale"
##sourcepath="D:\pygender\test\male"
realsex=sourcepath.split("\")[-1]
#path to saved models
modelpath="D:\pygender\"
j=0
gmm_files=[os.path.join(modelpath,fname) for fname in os.listdir(modelpath) if fname.endswith('.gmm')]
models=[pickle.load(open(fname,'rb')) for fname in gmm_files]
for fname in gmm_files:
    print("fname:",fname)
genders=[fname.split("\")[-1].split(".gmm")[0] for fname in gmm_files]
files=[os.path.join(sourcepath,f) for f in os.listdir(sourcepath) if f.endswith('.wav')]
for f in files:
    sr,audio=read(f)
    features=get_Mfcc(sr,audio)
    scores=None
    ##2个模型,所以长度是2
    log_likelihood=np.zeros(len(models))
    ##循环加载这两个模型
    for i in range(len(models)):
        gmm=models[i]
        ##求概率
        scores=np.array(gmm.score(features).reshape(1,-1))
        log_likelihood[i]=scores.sum()
    winner=np.argmax(log_likelihood)
    if (realsex==genders[winner]):
        j = j + 1

print("j:",j,"len:",len(files))
print("识别率是:",j/len(files))

女性识别率到达90%,

但是男性仅仅达到82%而已 ;官方教程中也是如此,对女性声音辨识度高

 

我找了的mfcc+GMM性别识别的代码是一模一样的,但是当你运行测试的时候,就会出现一种很奇怪的现象,男性一般高达90%多;女性只能达到12%;很极端的现象,后来我做了15次实验发现,测试里面的提取mfcc特征代码不对,我也不知道那些得出结果的博主们是怎么实现的?

我做了16次实验,不断的改变参数,改变代码,才发现提取mfcc特征的代码不对,不用担心,我提供的代码都是修正过后的!

  

最后

以上就是愤怒蚂蚁为你收集整理的Mfcc+GMM训练性别检测器模型,达到识别音频性别的效果的全部内容,希望文章能够帮你解决Mfcc+GMM训练性别检测器模型,达到识别音频性别的效果所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(44)

评论列表共有 0 条评论

立即
投稿
返回
顶部