概述
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 读取数据
data = np.loadtxt('Delivery.csv',delimiter=',')
print(data)
# 构造特征x,目标y
# 特征
x_data = data[:,0:-1]
y_data = data[:,-1]
# 初始化学习率 (步长)
learning_rate = 0.0001
# 初始化 截距
theta0 = 0
# 初始化 系数
theta1 = 0
theta2 = 0
# 初始化最大迭代次数
n_iterables = 100
def compute_mse(theta0,theta1,theta2,x_data,y_data):
'''
计算代价函数
'''
total_error = 0
for i in range(len(x_data)):
# 计算损失 (真实值-预测值)**2
total_error += (y_data[i]-(theta0 + theta1*x_data[i,0]+theta2*x_data[i,1]))**2
mse_ = total_error/len(x_data)/2
return mse_
def gradient_descent(x_data,y_data,theta0,theta1,theta2,learning_rate,n_iterables):
'''
梯度下降法
'''
m = len(x_data)
# 循环
for i in range(n_iterables):
# 初始化theta0,theta1,theta2偏导数
theta0_grad = 0
theta1_grad = 0
theta2_grad = 0
# 计算偏导的总和再平均
# 遍历m次
for j in range(m):
theta0_grad += (1/m)*((theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)-y_data[j])
theta1_grad += (1/m)*((theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)-y_data[j])*x_data[j,0]
theta2_grad += (1/m)*((theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)-y_data[j])*x_data[j,1]
# 更新theta
theta0 = theta0 - (learning_rate*theta0_grad)
theta1 = theta1 - (learning_rate*theta1_grad)
theta2 = theta2 - (learning_rate*theta2_grad)
return theta0,theta1,theta2
# 可视化分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)
plt.show()
print(f"开始:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")
print("开始跑起来了~")
theta0,theta1,theta2 = gradient_descent(x_data,y_data,theta0,theta1,theta2,learning_rate,n_iterables)
print(f"迭代{n_iterables}次后:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")
# 绘制预期平面
x_0 = x_data[:,0]
x_1 = x_data[:,1]
# 生成网格矩阵
x_0,x_1 = np.meshgrid(x_0,x_1)
# y
y_hat = theta0 + theta1*x_0 +theta2*x_1
ax.plot_surface(x_0,x_1,y_hat)
# 设置标签
ax.set_xlabel('Miles')
ax.set_ylabel('nums')
ax.set_zlabel('Time')
plt.show()
最后
以上就是俭朴小懒猪为你收集整理的多元线性回归(梯度下降法)的全部内容,希望文章能够帮你解决多元线性回归(梯度下降法)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复