我是靠谱客的博主 故意小猫咪,这篇文章主要介绍多元线性回归实现梯度下降,现在分享给大家,希望可以做个参考。

笔记:
这里写图片描述
这里写图片描述
代码实现:

在线性回归模型中使用梯度下降法

复制代码
1
2
import numpy as np import matplotlib.pyplot as plt
复制代码
1
2
3
np.random.seed(666)#数据随机,保持一致 x = 2 * np.random.random(size=100)#100个样本,每个样本有一个特征 y = x * 3. + 4. + np.random.normal(size=100)#均值为0,方差为1
复制代码
1
X = x.reshape(-1, 1)#100行,一列数据
复制代码
1
X[:20]
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
array([[ 1.40087424], [ 1.68837329], [ 1.35302867], [ 1.45571611], [ 1.90291591], [ 0.02540639], [ 0.8271754 ], [ 0.09762559], [ 0.19985712], [ 1.01613261], [ 0.40049508], [ 1.48830834], [ 0.38578401], [ 1.4016895 ], [ 0.58645621], [ 1.54895891], [ 0.01021768], [ 0.22571531], [ 0.22190734], [ 0.49533646]])
复制代码
1
y[:20]
复制代码
1
2
3
4
5
array([ 8.91412688, 8.89446981, 8.85921604, 9.04490343, 8.75831915, 4.01914255, 6.84103696, 4.81582242, 3.68561238, 6.46344854, 4.61756153, 8.45774339, 3.21438541, 7.98486624, 4.18885101, 8.46060979, 4.29706975, 4.06803046, 3.58490782, 7.0558176 ])
复制代码
1
2
plt.scatter(x, y) plt.show()

这里写图片描述

使用梯度下降法训练

复制代码
1
2
3
4
5
6
7
#定义损失函数 def J(theta, X_b, y): #异常处理,防止溢出 try: return np.sum((y - X_b.dot(theta))**2) / len(X_b)#除以样本数(多少行) except: return float('inf')
复制代码
1
2
3
4
5
6
7
#求导 def dJ(theta, X_b, y): res = np.empty(len(theta))#,开一个空间,求导之后结果的长度和x里的元素数目相同 res[0] = np.sum(X_b.dot(theta) - y)#第0项 for i in range(1, len(theta)): res[i] = (X_b.dot(theta) - y).dot(X_b[:,i])#第i个特征对应的向量即第i列 return res * 2 / len(X_b)#乘以系数,2/m
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#梯度下降过程 def gradient_descent(X_b, y, initial_theta, eta, n_iters = 1e4, epsilon=1e-8): theta = initial_theta cur_iter = 0 while cur_iter < n_iters: gradient = dJ(theta, X_b, y) last_theta = theta theta = theta - eta * gradient if(abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon): break cur_iter += 1 return theta
复制代码
1
2
3
4
5
X_b = np.hstack([np.ones((len(x), 1)), x.reshape(-1,1)])#为原先的x添加一列 initial_theta = np.zeros(X_b.shape[1]) eta = 0.01 theta = gradient_descent(X_b, y, initial_theta, eta)
复制代码
1
theta
复制代码
1
2
array([ 4.02145786, 3.00706277])

封装我们的线性回归算法

实现:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np from .metrics import r2_score class LinearRegression: def __init__(self): """初始化Linear Regression模型""" self.coef_ = None self.intercept_ = None self._theta = None def fit_normal(self, X_train, y_train): """根据训练数据集X_train, y_train训练Linear Regression模型""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train) self.intercept_ = self._theta[0] self.coef_ = self._theta[1:] return self def fit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4): """根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" def J(theta, X_b, y): try: return np.sum((y - X_b.dot(theta)) ** 2) / len(y) except: return float('inf') def dJ(theta, X_b, y): res = np.empty(len(theta)) res[0] = np.sum(X_b.dot(theta) - y) for i in range(1, len(theta)): res[i] = (X_b.dot(theta) - y).dot(X_b[:, i]) return res * 2 / len(X_b) def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8): theta = initial_theta cur_iter = 0 while cur_iter < n_iters: gradient = dJ(theta, X_b, y) last_theta = theta theta = theta - eta * gradient if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon): break cur_iter += 1 return theta X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) initial_theta = np.zeros(X_b.shape[1]) self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters) self.intercept_ = self._theta[0] self.coef_ = self._theta[1:] return self def predict(self, X_predict): """给定待预测数据集X_predict,返回表示X_predict的结果向量""" assert self.intercept_ is not None and self.coef_ is not None, "must fit before predict!" assert X_predict.shape[1] == len(self.coef_), "the feature number of X_predict must be equal to X_train" X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict]) return X_b.dot(self._theta) def score(self, X_test, y_test): """根据测试数据集 X_test 和 y_test 确定当前模型的准确度""" y_predict = self.predict(X_test) return r2_score(y_test, y_predict) def __repr__(self): return "LinearRegression()"
复制代码
1
2
3
4
from play.LinearRegression import LinearRegression lin_reg = LinearRegression() lin_reg.fit_gd(X, y)
复制代码
1
2
LinearRegression()
复制代码
1
lin_reg.coef_#系数
复制代码
1
2
array([ 3.00706277])
复制代码
1
lin_reg.intercept_#截距
复制代码
1
2
4.021457858204859

最后

以上就是故意小猫咪最近收集整理的关于多元线性回归实现梯度下降的全部内容,更多相关多元线性回归实现梯度下降内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部