我是靠谱客的博主 高高小土豆,最近开发中收集的这篇文章主要介绍STM32驱动小型4相步进电机(ULN2003+20BYJ46)STM32驱动小型4相步进电机(ULN2003+20BYJ46),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

STM32驱动小型4相步进电机(ULN2003+20BYJ46)

在小型和迷你产品应用时,可以用小型步进电机(如20BYJ46)作为运动驱动组件,步进电机本身要求≥5V的 电压供电,而STM32是电压上到3.3V级的芯片,加上驱动电流方面的因素,STM32不能直接驱动小型步进电机,需要串入驱动模块(如ULN2003)进行信号电压转换及承载足够大的驱动电流。

  1. 驱动模块ULN2003
    ULN2003的原理如下所示:
    在这里插入图片描述
    在这里插入图片描述
    芯片实现从B端向C端的open-drain转换,也即B端输出高,C端输出0电平(接地),而B端输出低,则C端输出高阻;C端接于步进电机的驱动线,步进电机的公共端接到驱动电压(如5V);当C端接地时,步进电机的相线上经过电流。ULN2003本身的COM端是反电势保护端,一般可以接到驱动电压(如5V),当反电势大于驱动电压,电流从驱动电源端走掉,而不经过ULN2003导致内部击穿。
    ULN2003模块的原理图如下:
    在这里插入图片描述
    将P4连接器的2端接到驱动电压(如5V),将3和4端通过跳线帽连接,将1端接到地,则完成供电端的连接;注意如果供电和信号控制端不在一起,则需要先将二者共地。ULN2003模块有7组信号转换端口,用1~4组端口作为步进电机的连接端口。

    2.步进电机20BYJ46
    小型5线4相步进电机有多种选型,20BYJ46是其中一种,额定电压为5V。5线中公共端连接驱动电压,而另外4线连接到信号驱动模块。
    驱动模块将某一根相线接地,则在步进电机公共端作用下,实现对该相线对驱动。通过不断对驱动相序对转换,实现对步进电机对持续驱动。
    4相步进电机的相线标记为A+,A-, B+, B-。建议根据步进电机datasheet里提供的相序进行换相设计,如20BYJ46的驱动时序:
    在这里插入图片描述
    需要注意匹配相线标记和驱动时序。实际上,因为国内出产的一些电机,datasheet可能沿用以前的,实际加工中给步进电机的接线顺序却做了调整,因此需要仔细核对和测试,以确认正确的相线标记。
    如这一款20BYJ46,经过实际测试,正确的步进电机相线标记为:A+蓝,A-黑,B+棕,B-黄。

    3.STM32开发板NUCLEO-F767ZI
    采用各类型STM32开发板连接ULN2003都可以进行步进电机的驱动代码设计。这里以NUCLEO-F767ZI和STM32CUBEIDE环境为例说明。
    NUCLEO-F767ZI本身自带ST-LINK小板,并USB复用连接到STM32F67的UART3串口,这里以UART3串口作为命令接口。
    首先,配置工程的时钟:
    在这里插入图片描述
    然后,配置通讯串口:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    继续,配置PD4~PD7作为输出GPIO,默认输出低电平,并在硬件上连接到ULN2003模块的B端口。
    在这里插入图片描述
    打开TIM1定时器,并设置允许中断,之后STM32程序会在每个中断到来时,进行输出相位切换。这里先设置为10ms产生一次中断,即10ms运行一步。
    在这里插入图片描述
    在这里插入图片描述

  2. STM32代码的实现
    代码实现功能:

    1. 通过串口接收数据0停止步进电机
    2. 通过串口接收数据1向正方向转动
    3. 通过串口接收数据2向反方向转动
    4. 识别当前的相位,并根据方向指示,进行换向
      完整的代码如下:
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* Written by Pegasus Yu @ 2021-07-11
 * 20BYJ46 4-phase stepper motor:
 * reduction ratio: 1/85
 * step angle: 7.5°
 * 4080 pulses for 1 circle
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
uint32_t free_time_delay;
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

TIM_HandleTypeDef htim1;

UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart3_tx;

/* USER CODE BEGIN PV */
uint8_t Uart_RxBuff;
uint8_t txd[100]={0};

uint8_t start_flag=0;
uint8_t motor_dir = 0;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_TIM1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART3_UART_Init();
  MX_TIM1_Init();
  /* USER CODE BEGIN 2 */
  HAL_UART_Receive_IT(&huart3, &Uart_RxBuff, 1);
  HAL_TIM_Base_Start_IT(&htim1);

  /*rotate 8-step*/
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET);
  //1
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_SET);
  //2
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_RESET);
  //3
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_SET);
  //4
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_RESET);
  //5
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_SET);
  //6
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_RESET);
  //7
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET);
  //8
  free_time_delay = 120*100; while(--free_time_delay>0);
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET);


  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 216;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Activate the Over-Drive mode
  */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USART3;
  PeriphClkInitStruct.Usart3ClockSelection = RCC_USART3CLKSOURCE_PCLK1;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief TIM1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM1_Init(void)
{

  /* USER CODE BEGIN TIM1_Init 0 */

  /* USER CODE END TIM1_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM1_Init 1 */

  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 21599;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 9;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 10;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM1_Init 2 */

  /* USER CODE END TIM1_Init 2 */

}

/**
  * @brief USART3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART3_UART_Init(void)
{

  /* USER CODE BEGIN USART3_Init 0 */

  /* USER CODE END USART3_Init 0 */

  /* USER CODE BEGIN USART3_Init 1 */

  /* USER CODE END USART3_Init 1 */
  huart3.Instance = USART3;
  huart3.Init.BaudRate = 115200;
  huart3.Init.WordLength = UART_WORDLENGTH_8B;
  huart3.Init.StopBits = UART_STOPBITS_1;
  huart3.Init.Parity = UART_PARITY_NONE;
  huart3.Init.Mode = UART_MODE_TX_RX;
  huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART3_Init 2 */

  /* USER CODE END USART3_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Stream3_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Stream3_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Stream3_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);

  /*Configure GPIO pins : PD4 PD5 PD6 PD7 */
  GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
	   if(UartHandle==&huart3)
	    {
		    HAL_UART_Transmit_DMA(&huart3, &Uart_RxBuff, 1);
	        if(Uart_RxBuff==1)
	        {
	        	motor_dir=0;
	        	if (start_flag==0) start_flag=1;
	        }
	        else if(Uart_RxBuff==2)
	        {
	        	motor_dir=1;
	        	if (start_flag==0) start_flag=1;
	        }
	        else if(Uart_RxBuff==0)
	        {
	        	start_flag=0;
	        }
	        else;

	    	HAL_UART_Receive_IT(&huart3, &Uart_RxBuff, 1);
	    }

}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
	if(htim==&htim1)
	{
		if(start_flag==0)
		{
			HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET);
		}
		else
		{
		  if(motor_dir==0)
		  {
				if(start_flag==1)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_SET);
				}
				else if(start_flag==2)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_RESET);
				}
				else if(start_flag==3)
				{
					  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_SET);
				}
				else if(start_flag==4)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_RESET);
				}
				else if(start_flag==5)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_SET);
				}
				else if(start_flag==6)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_RESET);
				}
				else if(start_flag==7)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET);
				}
				else if(start_flag==8)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET);
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET);
				}

				start_flag++;
				if(start_flag==9) start_flag=1;
		  }
		  else if(motor_dir==1)
		  {
          		if(start_flag==1) start_flag=8;
                else start_flag--;

				if(start_flag==1)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_SET);
				}
				else if(start_flag==2)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_RESET);
				}
				else if(start_flag==3)
				{
					  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_SET);
				}
				else if(start_flag==4)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_RESET);
				}
				else if(start_flag==5)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_SET);
				}
				else if(start_flag==6)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_RESET);
				}
				else if(start_flag==7)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET);
				}
				else if(start_flag==8)
				{
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET);
					   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET);
				}

		  }
		  else;

		}

	}

}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %drn", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

实际的接线图如下所示:
在这里插入图片描述
基于STM32CUBEIDE开发环境的HAL库例程:
https://download.csdn.net/download/hwytree/20197561

-End-

最后

以上就是高高小土豆为你收集整理的STM32驱动小型4相步进电机(ULN2003+20BYJ46)STM32驱动小型4相步进电机(ULN2003+20BYJ46)的全部内容,希望文章能够帮你解决STM32驱动小型4相步进电机(ULN2003+20BYJ46)STM32驱动小型4相步进电机(ULN2003+20BYJ46)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(80)

评论列表共有 0 条评论

立即
投稿
返回
顶部