我是靠谱客的博主 高高小土豆,这篇文章主要介绍STM32驱动小型4相步进电机(ULN2003+20BYJ46)STM32驱动小型4相步进电机(ULN2003+20BYJ46),现在分享给大家,希望可以做个参考。

STM32驱动小型4相步进电机(ULN2003+20BYJ46)

在小型和迷你产品应用时,可以用小型步进电机(如20BYJ46)作为运动驱动组件,步进电机本身要求≥5V的 电压供电,而STM32是电压上到3.3V级的芯片,加上驱动电流方面的因素,STM32不能直接驱动小型步进电机,需要串入驱动模块(如ULN2003)进行信号电压转换及承载足够大的驱动电流。

  1. 驱动模块ULN2003
    ULN2003的原理如下所示:
    在这里插入图片描述
    在这里插入图片描述
    芯片实现从B端向C端的open-drain转换,也即B端输出高,C端输出0电平(接地),而B端输出低,则C端输出高阻;C端接于步进电机的驱动线,步进电机的公共端接到驱动电压(如5V);当C端接地时,步进电机的相线上经过电流。ULN2003本身的COM端是反电势保护端,一般可以接到驱动电压(如5V),当反电势大于驱动电压,电流从驱动电源端走掉,而不经过ULN2003导致内部击穿。
    ULN2003模块的原理图如下:
    在这里插入图片描述
    将P4连接器的2端接到驱动电压(如5V),将3和4端通过跳线帽连接,将1端接到地,则完成供电端的连接;注意如果供电和信号控制端不在一起,则需要先将二者共地。ULN2003模块有7组信号转换端口,用1~4组端口作为步进电机的连接端口。

    2.步进电机20BYJ46
    小型5线4相步进电机有多种选型,20BYJ46是其中一种,额定电压为5V。5线中公共端连接驱动电压,而另外4线连接到信号驱动模块。
    驱动模块将某一根相线接地,则在步进电机公共端作用下,实现对该相线对驱动。通过不断对驱动相序对转换,实现对步进电机对持续驱动。
    4相步进电机的相线标记为A+,A-, B+, B-。建议根据步进电机datasheet里提供的相序进行换相设计,如20BYJ46的驱动时序:
    在这里插入图片描述
    需要注意匹配相线标记和驱动时序。实际上,因为国内出产的一些电机,datasheet可能沿用以前的,实际加工中给步进电机的接线顺序却做了调整,因此需要仔细核对和测试,以确认正确的相线标记。
    如这一款20BYJ46,经过实际测试,正确的步进电机相线标记为:A+蓝,A-黑,B+棕,B-黄。

    3.STM32开发板NUCLEO-F767ZI
    采用各类型STM32开发板连接ULN2003都可以进行步进电机的驱动代码设计。这里以NUCLEO-F767ZI和STM32CUBEIDE环境为例说明。
    NUCLEO-F767ZI本身自带ST-LINK小板,并USB复用连接到STM32F67的UART3串口,这里以UART3串口作为命令接口。
    首先,配置工程的时钟:
    在这里插入图片描述
    然后,配置通讯串口:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    继续,配置PD4~PD7作为输出GPIO,默认输出低电平,并在硬件上连接到ULN2003模块的B端口。
    在这里插入图片描述
    打开TIM1定时器,并设置允许中断,之后STM32程序会在每个中断到来时,进行输出相位切换。这里先设置为10ms产生一次中断,即10ms运行一步。
    在这里插入图片描述
    在这里插入图片描述

  2. STM32代码的实现
    代码实现功能:

    1. 通过串口接收数据0停止步进电机
    2. 通过串口接收数据1向正方向转动
    3. 通过串口接收数据2向反方向转动
    4. 识别当前的相位,并根据方向指示,进行换向
      完整的代码如下:
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Written by Pegasus Yu @ 2021-07-11 * 20BYJ46 4-phase stepper motor: * reduction ratio: 1/85 * step angle: 7.5° * 4080 pulses for 1 circle */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ uint32_t free_time_delay; /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef htim1; UART_HandleTypeDef huart3; DMA_HandleTypeDef hdma_usart3_tx; /* USER CODE BEGIN PV */ uint8_t Uart_RxBuff; uint8_t txd[100]={0}; uint8_t start_flag=0; uint8_t motor_dir = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_USART3_UART_Init(void); static void MX_TIM1_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_USART3_UART_Init(); MX_TIM1_Init(); /* USER CODE BEGIN 2 */ HAL_UART_Receive_IT(&huart3, &Uart_RxBuff, 1); HAL_TIM_Base_Start_IT(&htim1); /*rotate 8-step*/ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET); //1 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_SET); //2 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_RESET); //3 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_SET); //4 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_RESET); //5 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_SET); //6 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_RESET); //7 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET); //8 free_time_delay = 120*100; while(--free_time_delay>0); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 216; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Activate the Over-Drive mode */ if (HAL_PWREx_EnableOverDrive() != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK) { Error_Handler(); } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USART3; PeriphClkInitStruct.Usart3ClockSelection = RCC_USART3CLKSOURCE_PCLK1; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 21599; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 9; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 10; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } /** * @brief USART3 Initialization Function * @param None * @retval None */ static void MX_USART3_UART_Init(void) { /* USER CODE BEGIN USART3_Init 0 */ /* USER CODE END USART3_Init 0 */ /* USER CODE BEGIN USART3_Init 1 */ /* USER CODE END USART3_Init 1 */ huart3.Instance = USART3; huart3.Init.BaudRate = 115200; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart3) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART3_Init 2 */ /* USER CODE END USART3_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Stream3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream3_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET); /*Configure GPIO pins : PD4 PD5 PD6 PD7 */ GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) { if(UartHandle==&huart3) { HAL_UART_Transmit_DMA(&huart3, &Uart_RxBuff, 1); if(Uart_RxBuff==1) { motor_dir=0; if (start_flag==0) start_flag=1; } else if(Uart_RxBuff==2) { motor_dir=1; if (start_flag==0) start_flag=1; } else if(Uart_RxBuff==0) { start_flag=0; } else; HAL_UART_Receive_IT(&huart3, &Uart_RxBuff, 1); } } void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if(htim==&htim1) { if(start_flag==0) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET); } else { if(motor_dir==0) { if(start_flag==1) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_SET); } else if(start_flag==2) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_RESET); } else if(start_flag==3) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_SET); } else if(start_flag==4) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_RESET); } else if(start_flag==5) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_SET); } else if(start_flag==6) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_RESET); } else if(start_flag==7) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET); } else if(start_flag==8) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET); } start_flag++; if(start_flag==9) start_flag=1; } else if(motor_dir==1) { if(start_flag==1) start_flag=8; else start_flag--; if(start_flag==1) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_SET); } else if(start_flag==2) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_RESET); } else if(start_flag==3) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_SET); } else if(start_flag==4) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_RESET); } else if(start_flag==5) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_SET); } else if(start_flag==6) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_6, GPIO_PIN_RESET); } else if(start_flag==7) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET); } else if(start_flag==8) { HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, GPIO_PIN_SET); } } else; } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %drn", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

实际的接线图如下所示:
在这里插入图片描述
基于STM32CUBEIDE开发环境的HAL库例程:
https://download.csdn.net/download/hwytree/20197561

-End-

最后

以上就是高高小土豆最近收集整理的关于STM32驱动小型4相步进电机(ULN2003+20BYJ46)STM32驱动小型4相步进电机(ULN2003+20BYJ46)的全部内容,更多相关STM32驱动小型4相步进电机(ULN2003+20BYJ46)STM32驱动小型4相步进电机(ULN2003+20BYJ46)内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(81)

评论列表共有 0 条评论

立即
投稿
返回
顶部