概述
这三个表达式中,只有等式左边的参数是未知数,等式右边的所有变量都是已知的。要求解这三个表达式,我们需要设定一些条件:起始条件和边界条件。所谓起始条件就是开始模拟的那一个时刻,状态量的数值,在这里我们需要给定Tw,hf,he三个变量在Z1,Z2位置对应的数值。如果模拟的持续时间很长,起始条件在一定范围内一般对整个模拟的影响不是特别大,比如计算电池充放电过程中电池内部温度的变化(一般持续10个小时以上);但是如果模拟持续时间短,起始条件的设定就显得尤为重要,比如汽车碰撞(一般在0.5秒以内就能完成),或者安全气囊的起爆过程(一般在0.015秒内就能完成)。边界条件指的是有限元或者有限体积法将一个平面或者立体划分成很多个小单元,这些单元在物理边界的位置,状态量随时间变化的关系。比如:要计算一个炒菜锅炒菜过程中锅壁温度的分布,我们需要知道锅底火焰再各个接触面的温度随时间变化的关系;再比如要计算一个轮胎的压到一颗石子过程中的变形过程,我们需要知道这个石头在轮胎表面产生的轮廓随时间变化的关系;再比如我们要计算一个空调房各个角落的温度,我们需要知道,空调出风口的风速大小方向、温度、湿度随时间变化的关系,以及房间门口地下缝隙跟室外空气交换的速度以及室外空气温度和湿度随时间变化的关系。下面小编设定一下上面式子的起始条件(Initial Condition - I.C)和边界条件(Boundary Condition - B.C):I.C:Tw = [377.540533331317 386.026288241315 394.882816943803 403.780234260442 412.528927823382 421.020618818433 429.194964414357 437.019737325395 444.479243081580 451.567215232647 458.281835132688 464.622699931517 464.045356725446 461.548572973745 460.533446196397 459.951339710425 459.573192331990 459.311655878501 459.125265766771 458.992877081766 458.900967710798 458.850165061973 458.921507977048 459.670267128948 488.518351484883 503.038359452690 516.356161826663 528.545395038828 539.687125046220 549.862685009442]hf = [335879.230662688 383800.108882945 430054.713708057 474539.317712384 517232.789150323 558163.101428462 597387.616256567 634981.549133264 671031.215823456 705630.227842953 738877.802385151 770878.391400899 804774.697027078 841552.709305229 880672.392971595 922052.212463106 965712.639000156 1011715.66565823 1060145.65583764 1111101.06457330 1164632.21059020 1220683.53929694 1279315.98281919 1340335.98261620 1390832.64999538 1436955.33525927 1479057.18575508 1517473.69348631 1552518.42857505 1584481.89301558]he = [502113.781884773 508072.678267337 513859.836263859 519445.766992407 524817.943825280 529973.814790241 534916.758091738 539653.701008431 544193.726929246 548547.259765169 552725.604497504 556740.743076404 560605.289626758 564698.772122112 569140.263508662 573864.546505107 578861.774480850 584134.419639887 589689.968567105 595538.609396464 601692.232036153 608156.913219795 614925.943905113 622006.682551548 629375.754089632 635473.976895104 641043.976376731 646128.400323336 650767.764378679 654999.936793652]B.C :
最后
以上就是懦弱棒棒糖为你收集整理的matlab simulink 微分,Matlab/Simulink建模详解:一阶时变偏微分方程的求解的全部内容,希望文章能够帮你解决matlab simulink 微分,Matlab/Simulink建模详解:一阶时变偏微分方程的求解所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复