概述
先说一下loss吧,在之前的代码中,我们的使用的是官方自带的计算损失函数,交叉熵损失函数。
criterion = torch.nn.CrossEntropyLoss()
交叉熵损失函数主要由三部分组成,softmax--->log---->nll_loss。具体的有时间在写篇文章介绍介绍。实现代码如下:我定义的是一个类,实际上定义一个函数也行。
class Compute_Loss(nn.Module):
def __init__(self):
super(Compute_Loss, self).__init__()
def forward(self, pred, target):
pred = pred.to(device)
target = target.to(device)
log_soft = F.log_softmax(pred, dim=1)
loss = F.nll_loss(log_soft, target)
return loss
踩的一些坑:
1.之前搭建的resnet18网络最后一层是fc全连接层,我在fc层后面加了一层softmax层之后发现loss一直降不下去,后面在网上查了一下再结合nn.crosentropy损失函数的构成发现:
- 输入的每一类的置信度得分(
input
)应该是原始的,未经过softmax或者normalized。原因是这个函数会首先对输入的原始得分进行softmax,所以必须保证输入的是每一类的原始得分。而且输入的target不能是one_hot编码的形式。
2.同理我在FC层后面添加了一个Relu层,loss也是一样降不下去,可能是经过relu之后的数据在进行计算loss的时候会有影响。
3.搭建网络时,在forward里面直接使用nn.Linear()层,用GPU来训练的时候会报错,显示数据在GPU上而模型不在GPU上,尽管我将model.to("cuda")也没有用,所以需要在定义类的内置变量的时候定义nn.Linear(),然后再在forward里面调用。
自己定义loss函数,这里虽然是模仿nn.crossentropy(),但你也可以搭建一个自己的损失函数类来计算loss。
代码:
import torch
from torchvision import datasets, transforms, models
import os
import matplotlib.pyplot as plt
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from PIL import Image, ImageFile
from my_resnet import MainNet
import torch.nn.functional as F
import torch.nn as nn
ImageFile.LOAD_TRUNCATED_IMAGES = True
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
def train():
running_loss = 0
for batch_idx, (data, target) in enumerate(train_data):
data, target = data.to(device), target.to(device)
out = net(data)
loss = criterion(out, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss
def test():
correct, total = 0, 0
with torch.no_grad():
for _, (data, target) in enumerate(val_data):
data, target = data.to(device), target.to(device)
out = net(data)
out = F.softmax(out, dim=1)
prediction = out.argmax(dim=1)
# prediction = torch.max(out.data, dim=1)[1]
total += target.size(0)
correct += (prediction == target).sum().item()
print('Accuracy on test set: (%d/%d)=%d %%' % (correct, total, 100 * correct / total))
class Compute_Loss(nn.Module):
def __init__(self):
super(Compute_Loss, self).__init__()
def forward(self, pred, target):
pred = pred.to(device)
target = target.to(device)
log_soft = F.log_softmax(pred, dim=1)
loss = F.nll_loss(log_soft, target)
return loss
if __name__ == '__main__':
loss_list = []
Epoches = 200
Batch_Size = 4
Image_Size = [256, 256]
# 1.数据加载
data_dir = r'D:Codepython完整项目放置classify_projectmulti_classificationmy_dataset1'
# 1.1 定义要对数据进行的处理
data_transform = {x: transforms.Compose([transforms.Resize(Image_Size), transforms.ToTensor()]) for x in
["train", "valid"]}
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x), transform=data_transform[x]) for x in
["train", "valid"]}
dataloader = {x: torch.utils.data.DataLoader(dataset=image_datasets[x], batch_size=Batch_Size, shuffle=True) for x in
["train", "valid"]}
train_data, val_data = dataloader["train"], dataloader["valid"]
index_classes = image_datasets["train"].class_to_idx
print(index_classes)
example_classes = image_datasets["train"].classes
print(example_classes)
num_classes = 3
net = MainNet(num_classes)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)
# 5.定义损失函数,以及优化器
LR = 0.0001
criterion = Compute_Loss()
optimizer = optim.Adam(net.parameters(), lr=LR)
best_loss = 100
for epoch in range(Epoches):
loss = train()
loss_list.append(loss)
print("第%d轮的loss为:%5f:" % (epoch, loss))
test()
if loss < best_loss:
best_loss = loss
torch.save(net, "best1.pth")
torch.save(net, "last1.pth")
plt.title("Graph")
plt.plot(range(Epoches), loss_list)
plt.ylabel("loss")
plt.xlabel("epoch")
plt.show()
最后
以上就是忐忑龙猫为你收集整理的(四)关于loss的实现以及搭建网络过程中踩的一些坑的全部内容,希望文章能够帮你解决(四)关于loss的实现以及搭建网络过程中踩的一些坑所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复