我是靠谱客的博主 辛勤往事,最近开发中收集的这篇文章主要介绍numa详解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

作者:【吴业亮】

博客:https://wuyeliang.blog.csdn.net/

一、系统架构的演进从SMP到NUMA

1、SMP(Symmetric Multi-Processor)

在这里插入图片描述
所谓对称多处理器结构,是指服务器中多个CPU对称工作,无主次或从属关系。各CPU共享相同的物理内存,每个 CPU访问内存中的任何地址所需时间是相同的,因此SMP也被称为一致存储器访问结构(UMA:Uniform Memory Access)。对SMP服务器进行扩展的方式包括增加内存、使用更快的CPU、增加CPU、扩充I/O(槽口数与总线数)以及添加更多的外部设备(通常是磁盘存储)。

SMP服务器的主要特征是共享,系统中所有资源(CPU、内存、I/O等)都是共享的。也正是由于这种特征,导致了SMP服务器的主要问题,那就是它的扩展能力非常有限。对于SMP服务器而言,每一个共享的环节都可能造成SMP服务器扩展时的瓶颈,而最受限制的则是内存。由于每个CPU必须通过相同的内存总线访问相同的内存资源,因此随着CPU数量的增加,内存访问冲突将迅速增加,最终会造成CPU资源的浪费,使 CPU性能的有效性大大降低。

有实验数据表明,SMP型的服务器CPU最好是2-4颗就OK了,多余的就浪费了。

在这里插入图片描述

2、NUMA(Non-Uniform Memory Access)

在这里插入图片描述
由于SMP在扩展能力上的限制,人们开始探究如何进行有效地扩展从而构建大型系统的技术,NUMA就是这种努力下的结果之一。利用NUMA技术,可以把几十个CPU(甚至上百个CPU)组合在一个服务器内。NUMA服务器的基本特征是具有多个CPU模块,每个CPU模块由多个CPU(如4个)组成,并且具有独立的本地内存、I/O槽口等。由于其节点之间可以通过互联模块(如称为Crossbar Switch)进行连接和信息交互,因此每个CPU可以访问整个系统的内存(这是NUMA系统与MPP系统的重要差别)。显然,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问NUMA的由来。由于这个特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同CPU模块之间的信息交互。利用NUMA技术,可以较好地解决原来SMP系统的扩展问题,在一个物理服务器内可以支持上百个CPU。比较典型的NUMA服务器的例子包括HP的Superdome、SUN15K、IBMp690等。

每个CPU模块之间都是通过互联模块进行连接和信息交互,CPU都是互通互联的,同时,每个CPU模块平均划分为若干个Chip(不多于4个),每个Chip都有自己的内存控制器及内存插槽。

在NUMA中还有三个节点的概念:

1)、本地节点:对于某个节点中的所有CPU,此节点称为本地节点。

2)、邻居节点:与本地节点相邻的节点称为邻居节点。

3)、远端节点:非本地节点或邻居节点的节点,称为远端节点。

4)、邻居节点和远端节点,都称作非本地节点(Off Node)。

CPU访问不同类型节点内存的速度是不相同的,访问本地节点的速度最快,访问远端节点的速度最慢,即访问速度与节点的距离有关,距离越远访问速度越慢,此距离称作Node Distance。应用程序要尽量的减少不通CPU模块之间的交互,如果应用程序能有方法固定在一个CPU模块里,那么应用的性能将会有很大的提升。

二、NUMA实践

1、安装numactl工具
Linux提供了一个一个手工调优的命令numactl(默认不安装)

#yum install numactl -y
#numactl --hardware  列举系统上的NUMA节点

2、查看numa状态

# numactl  --show 
policy: default
preferred node: current
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
cpubind: 0 1 
nodebind: 0 1 
membind: 0 1
# numastat
                           node0           node1
numa_hit              1296554257       918018444
numa_miss                8541758        40297198
numa_foreign            40288595         8550361
interleave_hit             45651           45918
local_node            1231897031       835344122
other_node              64657226        82674322

说明:

numa_hit—命中的,也就是为这个节点成功分配本地内存访问的内存大小

numa_miss—把内存访问分配到另一个node节点的内存大小,这个值和另一个node的numa_foreign相对应。

numa_foreign–另一个Node访问我的内存大小,与对方node的numa_miss相对应

local_node----这个节点的进程成功在这个节点上分配内存访问的大小

other_node----这个节点的进程 在其它节点上分配的内存访问大小

很明显,miss值和foreign值越高,就要考虑绑定的问题。

3、numad服务

在redhat6中,有一个numad的服务(需手工安装),它可以自动的监控我们cpu状况,并自动平衡资源,这个服务需要在内存使用量非常大的时候才会有明显的效果,当内存空余量较大时,需要关闭KSM,避免发生冲突。官方说在某些内存使用巨大的环境中,可能会提高50%的性能。

# service numad start

4、查看cpu和内存使用情况

# numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
node 0 size: 64337 MB
node 0 free: 1263 MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
node 1 size: 64509 MB
node 1 free: 30530 MB
node distances:
node   0   1 
  0:  10  21 
  1:  21  10

cpu0 可用 内存 1263 MB

cpu1 可用内存 30530 MB

当cpu0上申请内存超过1263M时必定使用swap,这个是很不合理的。

这里假设我要执行一个java param命令,此命令需要1G内存;一个python param命令,需要8G内存。
最好的优化方案时python在node1中执行,而java在node0中执行,那命令是:

#numactl --cpubind=0 --membind=0 python param
#numactl --cpubind=1 --membind=1 java param

5、NUMA的内存分配策略

1.缺省(default):总是在本地节点分配(分配在当前进程运行的节点上);

2.绑定(bind):强制分配到指定节点上;

3.交叉(interleave):在所有节点或者指定的节点上交织分配;

4.优先(preferred):在指定节点上分配,失败则在其他节点上分配。

因为NUMA默认的内存分配策略是优先在进程所在CPU的本地内存中分配,会导致CPU节点之间内存分配不均衡,当某个CPU节点的内存不足时,会导致swap产生,而不是从远程节点分配内存。这就是所谓的swap insanity 现象。

举例:

# numactl --hardware
node 0 cpus: 0 2 4 6
node 0 size: 65490 MB
node 0 free: 24447 MB
node 1 cpus: 1 3 5 7
node 1 size: 65536 MB
node 1 free: 16050 MB
node distances:
node   0   1 
  0:  10  20 
  1:  20  10

可以看到numa节点是2个,cpu物理节点是8个
现在我们绑定资源,两颗cpu,每颗4个物理节点,那么我们开4个mysql实例,每个实例绑定2个cpu物理节点

numactl --physcpubind=0,3 --localalloc  mysqld_multi --defaults-extra-file=/etc/mysqld_multi.cnf start 1

–physcpubind 指定绑定的cpu节点,

–localalloc表示使用内存方式,不交叉,以免降低性能,

mysqld_multi是mysql实例启动命令

三、如何关闭NUMA

方法一:通过bios关闭

BIOS:interleave = Disable / Enable

方法二:通过OS关闭

1、编辑 /etc/default/grub 文件,加上:numa=off

GRUB_CMDLINE_LINUX="crashkernel=auto numa=off rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet"

2、重新生成 /etc/grub2.cfg 配置文件:

# grub2-mkconfig -o /etc/grub2.cfg

3、重启操作系统

# reboot

4、确认:

# dmesg | grep -i numa
[    0.000000] Command line: BOOT_IMAGE=/vmlinuz-3.10.0-327.el7.x86_64 root=/dev/mapper/centos-root ro crashkernel=auto numa=off rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet[    0.000000] NUMA turned off[    0.000000] Kernel command line: BOOT_IMAGE=/vmlinuz-3.10.0-327.el7.x86_64 root=/dev/mapper/centos-root ro crashkernel=auto numa=off rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet

# cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-3.10.0-327.el7.x86_64 root=/dev/mapper/centos-root ro crashkernel=auto numa=off rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet

参考:

https://blog.csdn.net/blackmanren/article/details/53490655

最后

以上就是辛勤往事为你收集整理的numa详解的全部内容,希望文章能够帮你解决numa详解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(40)

评论列表共有 0 条评论

立即
投稿
返回
顶部