我是靠谱客的博主 顺心奇异果,最近开发中收集的这篇文章主要介绍Pytorch实现Faster-RCNN,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

P y t o r c h 实现 F a s t e r − R C N N Pytorch实现Faster-RCNN Pytorch实现FasterRCNN


  • 基本结构
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200614150822116.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQxMzc1MzE4,size_16,color_FFFFFF,t_70)

self.backbone:提取出特征图—>features
self.rpn:选出推荐框—>proposals
self.roi_heads:根据proposals在features上进行抠图—>detections

        
        features = self.backbone(images.tensors)
 
        proposals, proposal_losses = self.rpn(images, features, targets)
        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
   

1.self.backbone




    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

在这里插入图片描述

在这里插入图片描述
这里的features就是提取的特征图,而且features是字典形式,由5张特征图组成,这里就是构成了不同的尺度的要求,特征图越小,所映射原图的范围越大。

注:这里的理解很重要,其实这里能够完全理解,那对图像检测基本就入门了。


五种featureMap:
x=self.layer1—>‘0’

在这里插入图片描述
x=self.layer2—>‘1’
在这里插入图片描述
x=self.layer3—>‘2’

在这里插入图片描述

x=self.layer4—>‘3’

在这里插入图片描述
x=self.avgpool—>‘pool’
在这里插入图片描述
[1,256,11,21]
1:是pytorch要求的一般会用于batchsize的功效,多少张图片
256:通道数
11:height 高
21:weight 宽


2.self.rpn

objectness, pred_bbox_deltas = self.head(features)
anchors = self.anchor_generator(images, features)

boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)

self.head(features):

    def forward(self, x):
        # type: (List[Tensor])
        logits = []
        bbox_reg = []
        for feature in x:
            t = F.relu(self.conv(feature))
            logits.append(self.cls_logits(t))  # 对t分类
            bbox_reg.append(self.bbox_pred(t))  # 对t回归
        return logits, bbox_reg

x:就是输出的5张特征图features
在这里插入图片描述
objectness, pred_bbox_deltas = self.head(features)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

![在这里插入图片描述](https://img-blog.csdnimg.cn/2020061418492833.png)

锚框是由特征图上一个像素点在原图上得到的不同尺度的锚框,一般fasterrcnn论文里面是9个尺度
在这里是3

anchors = self.anchor_generator(images, features)

在这里插入图片描述
在这里插入图片描述


boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)

这里的scores是的是前景的概率。(这里一般就是2分类,前景或背景)

top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level)

在这里插入图片描述

在这里插入图片描述
222603—》4693

 for boxes, scores, lvl, img_shape in zip(proposals, objectness, levels, image_shapes):
            boxes = box_ops.clip_boxes_to_image(boxes, img_shape)
            keep = box_ops.remove_small_boxes(boxes, self.min_size)
            boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
            # non-maximum suppression, independently done per level
            
            # NMS的实现
            keep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh)



            # keep only topk scoring predictions
            # keep就是最终保留的
            keep = keep[:self.post_nms_top_n()]



            boxes, scores = boxes[keep], scores[keep]
            final_boxes.append(boxes)
            final_scores.append(scores)
        return final_boxes, final_scores

在这里插入图片描述
在这里插入图片描述
4693–》1324

在这里插入图片描述
1324–》1000
这里的1000是在faster_rcnn.py中设置的

在这里插入图片描述
为什么不是2000是因为训练的时候是2000,这里只是测试

![在这里插入图片描述](https://img-blog.csdnimg.cn/2020061419074471.png)

在这里插入图片描述


proposals, proposal_losses = self.rpn(images, features, targets)
在这里插入图片描述
就是坐标
在这里插入图片描述
在这里插入图片描述


roi_heads()

        box_features = self.box_roi_pool(features, proposals, image_shapes)
        box_features = self.box_head(box_features)
        class_logits, box_regression = self.box_predictor(box_features)
        #class_logits: 分类概率 和 box_regression :边界框回归

box_roi_pool 规整,为相同尺度的特征图,便于之后的分类与回归
box_roi_pool:两个FC层

在这里插入图片描述


        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
        # 映射回原图
        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)  

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)  

  • 数据流动
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200614150916150.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQxMzc1MzE4,size_16,color_FFFFFF,t_70)

补充:pytorch自带detection模块:

在这里插入图片描述
在这里插入图片描述


import os
import time
import torch.nn as nn
import torch
import random
import numpy as np
import torchvision.transforms as transforms
import torchvision
from PIL import Image
import torch.nn.functional as F
from tools.my_dataset import PennFudanDataset
#from tools.common_tools import set_seed
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.transforms import functional as F

#set_seed(1)  # 设置随机种子

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# classes_coco
COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]


def vis_bbox(img, output, classes, max_vis=40, prob_thres=0.4):
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(img, aspect='equal')
    
    out_boxes = output_dict["boxes"].cpu()
    out_scores = output_dict["scores"].cpu()
    out_labels = output_dict["labels"].cpu()
    
    num_boxes = out_boxes.shape[0]
    for idx in range(0, min(num_boxes, max_vis)):

        score = out_scores[idx].numpy()
        bbox = out_boxes[idx].numpy()
        class_name = classes[out_labels[idx]]

        if score < prob_thres:
            continue

        ax.add_patch(plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False,
                                   edgecolor='red', linewidth=3.5))
        ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')
    plt.show()
    plt.close()


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class RandomHorizontalFlip(object):
    def __init__(self, prob):
        self.prob = prob

    def __call__(self, image, target):
        if random.random() < self.prob:
            height, width = image.shape[-2:]
            image = image.flip(-1)
            bbox = target["boxes"]
            bbox[:, [0, 2]] = width - bbox[:, [2, 0]]
            target["boxes"] = bbox
        return image, target


class ToTensor(object):
    def __call__(self, image, target):
        image = F.to_tensor(image)
        return image, target


if __name__ == "__main__":

    # config
    LR = 0.001
    num_classes = 2
    batch_size = 1
    start_epoch, max_epoch = 0, 30
    train_dir = os.path.join(BASE_DIR, "data", "PennFudanPed")
    train_transform = Compose([ToTensor(), RandomHorizontalFlip(0.5)])

    # step 1: data
    train_set = PennFudanDataset(data_dir=train_dir, transforms=train_transform)

    # 收集batch data的函数
    def collate_fn(batch):
        return tuple(zip(*batch))

    train_loader = DataLoader(train_set, batch_size=batch_size, collate_fn=collate_fn)

    # step 2: model
    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) # replace the pre-trained head with a new one

    model.to(device)

    # step 3: loss
    # in lib/python3.6/site-packages/torchvision/models/detection/roi_heads.py
    # def fastrcnn_loss(class_logits, box_regression, labels, regression_targets)

    # step 4: optimizer scheduler
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params, lr=LR, momentum=0.9, weight_decay=0.0005)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)

    # step 5: Iteration

    for epoch in range(start_epoch, max_epoch):

        model.train()
        for iter, (images, targets) in enumerate(train_loader):

            images = list(image.to(device) for image in images)
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

            # if torch.cuda.is_available():
            #     images, targets = images.to(device), targets.to(device)

            loss_dict = model(images, targets)  # images is list; targets is [ dict["boxes":**, "labels":**], dict[] ]

            losses = sum(loss for loss in loss_dict.values())

            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} ".format(
                epoch, max_epoch, iter + 1, len(train_loader), losses.item()))

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()

        lr_scheduler.step()

    # test
    model.eval()

    # config
    vis_num = 5
    vis_dir = os.path.join(BASE_DIR, "data", "PennFudanPed", "PNGImages")
    img_names = list(filter(lambda x: x.endswith(".png"), os.listdir(vis_dir)))
    random.shuffle(img_names)
    preprocess = transforms.Compose([transforms.ToTensor(), ])

    for i in range(0, vis_num):

        path_img = os.path.join(vis_dir, img_names[i])
        # preprocess
        input_image = Image.open(path_img).convert("RGB")
        img_chw = preprocess(input_image)

        # to device
        if torch.cuda.is_available():
            img_chw = img_chw.to('cuda')
            model.to('cuda')

        # forward
        input_list = [img_chw]
        with torch.no_grad():
            tic = time.time()
            print("input img tensor shape:{}".format(input_list[0].shape))
            output_list = model(input_list)
            output_dict = output_list[0]
            print("pass: {:.3f}s".format(time.time() - tic))

        # visualization
        vis_bbox(input_image, output_dict, COCO_INSTANCE_CATEGORY_NAMES, max_vis=20, prob_thres=0.5)  # for 2 epoch for nms




彩蛋

最后

以上就是顺心奇异果为你收集整理的Pytorch实现Faster-RCNN的全部内容,希望文章能够帮你解决Pytorch实现Faster-RCNN所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部