我是靠谱客的博主 美满大雁,最近开发中收集的这篇文章主要介绍matlab中用rng替换rand('seed',sd)、randn('seed',sd)和rand('state',sd)的通俗解释,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1. rand('seed',sd)、randn('seed',sd)和rand('state',sd)中各参数的含义

      我们知道,rand和randn都是用来产生伪随机数的,但是产生伪随机数的generator(发生器)有多种,而seed、state、twister等就是用来指定不同类型的伪随机数发生器的,其中seed 指“v4 generator”,state指“v5 generator”,twister指"Mersenne Twister generator"。第二个参数“sd”是“seed”的缩写,表示发生器的种子点,这个值将作为generator的输入,用于产生伪随机数。这里有必要先解释一下随机数和伪随机数的本质区别:随机数是在某次产生过程中,按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,不可重复的;而伪随机数则是按照一定算法模拟产生的,其结果是确定的,可重复的。当然这里的确定和可重复是指给定相同的初始值,算法模拟将产生相同的输出。

2. 为什么要用rand('seed',sd)、randn('seed',sd)和rand('state',sd)

        在实际应用中,比如检查程序问题时,为了重现错误,我们可能希望产生相同的伪随机数,这个时候就需要用这些表达式了。正如前面所说的,如果选用相同的generator并设置相同的初始值sd,那么你就可以得到同样伪随机数。

举个例子:

rand('seed',0); %选定generator并设定初始值

a=rand(3,3);

rand('seed',0);%设定同样的generator和相同的初始值

b=rand(3,3);

a

b

输出:

a =
   0.218959186328090   0.679296405836612   0.519416372067955  
   0.047044616214486   0.934692895940828   0.830965346112366 
   0.678864716868319   0.383502077489859   0.034572110527461 

b =
   0.218959186328090   0.679296405836612   0.519416372067955  
   0.047044616214486   0.934692895940828   0.830965346112366  
   0.678864716868319   0.383502077489859   0.034572110527461   

对比后你会发现a和b相等。

3. 为什么要用rng替换rand('seed',sd)、randn('seed',sd)和rand('state',sd)

        MATLAB官方给出的理由如下:

1)“seed”和“state”等词对于所对应的generator来说是一种误导;

2)除了“twister”以外,其他的generator都有问题;

3)这些表达式对于rand和randn采用了不同的generator,没必要。

所以在新版的MATLAB中已经不推荐这种方法了。

4. 替换的具体方法

下图是MATLAB给的一个替换的方式,最右边的才是它推荐的方法。


实际应用中举例如下(这里只以seed为例,其他的类似):

randn('seed',0);%rng(0);

a=randn(4,3);

randn('seed',0);%rng(0);

b=randn(4,3);

a

b

MATLAB推荐用注释掉的语句替换对应行的语句。

最后

以上就是美满大雁为你收集整理的matlab中用rng替换rand('seed',sd)、randn('seed',sd)和rand('state',sd)的通俗解释的全部内容,希望文章能够帮你解决matlab中用rng替换rand('seed',sd)、randn('seed',sd)和rand('state',sd)的通俗解释所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(57)

评论列表共有 0 条评论

立即
投稿
返回
顶部