概述
降维是机器学习中的可视化和理解高维数据的强大工具。t-SNE是最广泛使用的可视化技术之一,但其性能在大型数据集中会受到影响。
UMAP是McInnes等人的一项新技术。与t-SNE相比,它具有许多优势,最显著的是提高了速度并更好地保存了数据的全局结构。例如,UMAP可以在3min之内处理完784维,70000点的MNIST数据集,但是t-SNE则需要45min。此外,UMAP倾向于更好地保留数据的全局结构,这可以归因于UMAP强大的理论基础。
1
简单比较UMAP与t-SNE
下图是UMAP和t-SNE对一套784维Fashion MNIST高维数据集降维到3维的效果的比较。高清3D图参见:https://pair-code.github.io/understanding-umap/。
虽然这两种算法都表现出强大的局部聚类并将相似的类别分组在一起,但UMAP还将这些相似类别的分组彼此分开。另外,UMAP降维用了4分钟,而多核t-SNE用了27分钟。
2
UMAP参数
UMAP的两个最常用的参数:n_neighbors 和 min_dist,它们可有效地用于控制最终结果中局部结构和全局结构之间的平衡。
最后
以上就是高兴金鱼为你收集整理的umap算法_UMAP的初步了解及与tSNE的比较的全部内容,希望文章能够帮你解决umap算法_UMAP的初步了解及与tSNE的比较所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复