我是靠谱客的博主 安静鲜花,最近开发中收集的这篇文章主要介绍单细胞三大R包之Seurat,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本文是Seurat包的学习笔记,相比以前的略有更新,重新整理。

2019年7月的生物信息学人才论坛会议上,伊现富老师说过一句话:“过去的流程使用的是过去的工具”,这次重新学单细胞,对这句话有了更深刻的理解。

是的,现在去看曾老板的视频还有豆豆之前的代码(2018-19年的),就有很多跑不通了。

并不是他们写错了,只是工具更新了,原来的函数和数据使用方法变了。

与时俱进这个词,在单细胞的领域体现的淋漓尽致,只有不断学习和进步,才能跟得上这变化的速度。

1.数据和R包准备

代码:https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html

数据:https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz

rm(list = ls())
options(stringsAsFactors = F)
library(dplyr)
library(Seurat)
library(patchwork)

2.读取数据

10X的输入数据是固定的三个文件,在工作目录下新建01_data/,把三个文件放进去。

dir("01_data/")
## [1] "barcodes.tsv"      "genes.tsv"         "matrix.mtx"       
pbmc.data <- Read10X(data.dir = "01_data/")
pbmc <- CreateSeuratObject(counts = pbmc.data, 
                           project = "pbmc3k", 
                           min.cells = 3, 
                           min.features = 200)
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')

单细胞相关的这几个R包都是打包成对象

pbmc
## An object of class Seurat 
## 13714 features across 2700 samples within 1 assay 
## Active assay: RNA (13714 features, 0 variable features)
pbmc.data[c("CD3D","TCL1A","MS4A1"), 1:30]
## 3 x 30 sparse Matrix of class "dgCMatrix"
##    [[ suppressing 30 column names 'AAACATACAACCAC-1', 'AAACATTGAGCTAC-1', 'AAACATTGATCAGC-1' ... ]]
##                                                                    
## CD3D  4 . 10 . . 1 2 3 1 . . 2 7 1 . . 1 3 . 2  3 . . . . . 3 4 1 5
## TCL1A . .  . . . . . . 1 . . . . . . . . . . .  . 1 . . . . . . . .
## MS4A1 . 6  . . . . . . 1 1 1 . . . . . . . . . 36 1 2 . . 2 . . . .

查看表达矩阵,很大一个。

exp = pbmc[["RNA"]]@counts;dim(exp)
## [1] 13714  2700
## [1] 13714  2700
exp[30:34,1:4]
## 5 x 4 sparse Matrix of class "dgCMatrix"
##        AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1
## MRPL20                1                .                1                .
## ATAD3C                .                .                .                .
## ATAD3B                .                .                .                .
## ATAD3A                .                .                .                .
## SSU72                 .                1                .                3

点号的地方是0,因为0太多了,存成稀疏矩阵可以省点空间。

3.质控

这里是对细胞进行的质控,指标是:

线粒体基因含量不能过高;

nFeature_RNA 不能过高或过低

为什么? nFeature_RNA是每个细胞中检测到的基因数量。nCount_RNA是细胞内检测到的分子总数。nFeature_RNA过低,表示该细胞可能已死/将死或是空液滴。太高的nCount_RNA和/或nFeature_RNA表明“细胞”实际上可以是两个或多个细胞。结合线粒体基因count数除去异常值,即可除去大多数双峰/死细胞/空液滴,因此它们过滤是常见的预处理步骤。 参考自:https://www.biostars.org/p/407036/

3.1 质控指标的可视化
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
head(pbmc@meta.data, 3)
##                  orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACATACAACCAC-1     pbmc3k       2419          779  3.0177759
## AAACATTGAGCTAC-1     pbmc3k       4903         1352  3.7935958
## AAACATTGATCAGC-1     pbmc3k       3147         1129  0.8897363
VlnPlot(pbmc, 
        features = c("nFeature_RNA",
                     "nCount_RNA", 
                     "percent.mt"), 
        ncol = 3)

根据这个三个图,确定了这个数据的过滤标准:

nFeature_RNA在200~2500之间;线粒体基因占比在5%以下。

3.2 三个指标之间的相关性
plot1 <- FeatureScatter(pbmc, 
                        feature1 = "nCount_RNA", 
                        feature2 = "percent.mt")
plot2 <- FeatureScatter(pbmc, 
                        feature1 = "nCount_RNA", 
                        feature2 = "nFeature_RNA")

plot1 + plot2

3.3 过滤
pbmc <- subset(pbmc, 
               subset = nFeature_RNA > 200 & 
                 nFeature_RNA < 2500 & 
                 percent.mt < 5)
dim(pbmc)
## [1] 13714  2638

原本是2700个细胞,可见用上面的标准是过滤掉了62个。

4. 数据归一化,找高变化基因

这里有点类似于常规转录组和芯片数据的差异分析过程,但并不是预知分组的比较,也没有具体的统计量来衡量,直接是你指定用哪种算法,要多少个高变化基因(HVG)

pbmc <- NormalizeData(pbmc)
pbmc@assays$RNA[30:34,1:3]
## 5 x 3 sparse Matrix of class "dgCMatrix"
##        AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1
## MRPL20         1.635873         .                1.429744
## ATAD3C         .                .                .       
## ATAD3B         .                .                .       
## ATAD3A         .                .                .       
## SSU72          .                1.111715         .
# 有三种算法:vst、mean.var.plot、dispersion;默认选择2000个HVG
pbmc <- FindVariableFeatures(pbmc, 
                             selection.method = "vst", 
                             nfeatures = 2000)
top10 <- head(VariableFeatures(pbmc), 10);top10
##  [1] "PPBP"   "LYZ"    "S100A9" "IGLL5"  "GNLY"   "FTL"    "PF4"    "FTH1"  
##  [9] "GNG11"  "S100A8"

这里选了2000个,把前十个在图上标记出来。

plot1 <- VariableFeaturePlot(pbmc)
plot2 <- LabelPoints(plot = plot1, 
                     points = top10, 
                     repel = TRUE)
## When using repel, set xnudge and ynudge to 0 for optimal results
plot1 + plot2
## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous x-axis

5. 标准化和降维

all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
## Centering and scaling data matrix
pbmc[["RNA"]]@scale.data[30:34,1:3]

曾经他们很多都是0。经过处理变成了不同的数字,这个并不会影响到后续分析,因为重点不是绝对的数字,而是比较起来的相对大小。为了让细胞与细胞之间的基因表达量更加可比,做这些处理是合理并可用的。

##        AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1
## MRPL20       1.50566156      -0.56259931       1.24504892
## ATAD3C      -0.04970561      -0.04970561      -0.04970561
## ATAD3B      -0.10150202      -0.10150202      -0.10150202
## ATAD3A      -0.13088200      -0.13088200      -0.13088200
## SSU72       -0.68454728       0.58087748      -0.68454728

ScaleData函数: 调整每个基因的表达量,使整个细胞的平均表达量为0 缩放每个基因的表达,从而使细胞之间的方差为1 此步骤给下游分析中的每个基因相等的权重,因此高表达的基因不会影响全局。

5.1 线性降维PCA
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP 
##     FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP 
##     PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW 
##     CD247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A 
##     MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74 
##     HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB 
##     BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74 
## Negative:  NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2 
##     CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX 
##     TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA 
##     HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8 
##     PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU 
##     HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1 
##     NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A 
##     SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINC00926, GNG11, HLA-DRB5, SPARC 
##     GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1 
## Negative:  VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL 
##     AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1, CD27, FCN1, RBP7 
##     LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6 
## PC_ 5 
## Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2 
##     GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5 
##     RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX 
## Negative:  LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1 
##     PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B 
##     FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB
# 查看前三个主成分由哪些feature组成
print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)
## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1 
## Negative:  NKG7, PRF1, CST7, GZMB, GZMA 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1 
## Negative:  VIM, IL7R, S100A6, IL32, S100A8 
## PC_ 5 
## Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY 
## Negative:  LTB, IL7R, CKB, VIM, MS4A7
VizDimLoadings(pbmc, dims = 1:2, reduction = "pca")

#每个主成分对应基因的热图
DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)

# 应该选多少个主成分进行后续分析
ElbowPlot(pbmc)

引用一下豆豆:它是根据每个主成分对总体变异水平的贡献百分比排序得到的图,我们主要关注”肘部“的PC,它是一个转折点(也即是这里的PC9-10),说明取前10个主成分可以比较好地代表总体变化

#PC1和2
DimPlot(pbmc, reduction = "pca")+ NoLegend()

# 因为我们前面挑选了10个PCs,所以这里dims定义为10个
pbmc <- FindNeighbors(pbmc, dims = 1:10)
## Computing nearest neighbor graph
## Computing SNN
pbmc <- FindClusters(pbmc, resolution = 0.5) #分辨率
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2638
## Number of edges: 95965
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8723
## Number of communities: 9
## Elapsed time: 0 seconds
# 结果聚成几类,用Idents查看
length(levels(Idents(pbmc)))
## [1] 9

resolution的大小决定着分群的数量,3000细胞时,0.4~1.2的分辨率表现较好。

5.2 UMAP 和t-sne

PCA是线性降维,这两个是非线性降维。理解起来比较复杂,用起来只是一个函数。

pbmc <- RunUMAP(pbmc, dims = 1:10)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 14:28:12 UMAP embedding parameters a = 0.9922 b = 1.112
## 14:28:12 Read 2638 rows and found 10 numeric columns
## 14:28:12 Using Annoy for neighbor search, n_neighbors = 30
## 14:28:12 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 14:28:12 Writing NN index file to temp file /var/folders/mg/s3ln5v717ps4934qqym_3zk80000gn/T//RtmpWoykmm/file4458721f4d08
## 14:28:12 Searching Annoy index using 1 thread, search_k = 3000
## 14:28:13 Annoy recall = 100%
## 14:28:13 Commencing smooth kNN distance calibration using 1 thread
## 14:28:13 Initializing from normalized Laplacian + noise
## 14:28:13 Commencing optimization for 500 epochs, with 105124 positive edges
## 14:28:16 Optimization finished
DimPlot(pbmc, reduction = "umap")

saveRDS(pbmc, file = "01_data/pbmc_tutorial.rds")

6.找marker基因

啥叫marker基因呢。和差异基因里面的上调基因有点类似,某个基因在某一簇细胞里表达量都很高,在其他簇表达量很低,那么这个基因就是这簇细胞的象征。

现成的函数可以实现:

  • 单独找某个cluster的maker基因
  • 比较某几个cluster
  • 找全部cluster的maker基因
cluster1.markers <- FindMarkers(pbmc, ident.1 = 1, min.pct = 0.25)
head(cluster1.markers, n = 3)
##        p_val avg_log2FC pct.1 pct.2 p_val_adj
## S100A9     0   5.570063 0.996 0.215         0
## S100A8     0   5.477394 0.975 0.121         0
## FCN1       0   3.394219 0.952 0.151         0
cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3), min.pct = 0.25)
head(cluster5.markers, n = 3)
##                p_val avg_log2FC pct.1 pct.2     p_val_adj
## FCGR3A 2.150929e-209   4.267579 0.975 0.039 2.949784e-205
## IFITM3 6.103366e-199   3.877105 0.975 0.048 8.370156e-195
## CFD    8.891428e-198   3.411039 0.938 0.037 1.219370e-193
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
pbmc.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_log2FC)
## Registered S3 method overwritten by 'cli':
##   method     from         
##   print.boxx spatstat.geom
## # A tibble: 18 x 7
## # Groups:   cluster [9]
##        p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene    
##        <dbl>      <dbl> <dbl> <dbl>     <dbl> <fct>   <chr>   
##  1 1.74e-109       1.07 0.897 0.593 2.39e-105 0       LDHB    
##  2 1.17e- 83       1.33 0.435 0.108 1.60e- 79 0       CCR7    
##  3 0.              5.57 0.996 0.215 0.        1       S100A9  
##  4 0.              5.48 0.975 0.121 0.        1       S100A8  
##  5 7.99e- 87       1.28 0.981 0.644 1.10e- 82 2       LTB     
##  6 2.61e- 59       1.24 0.424 0.111 3.58e- 55 2       AQP3    
##  7 0.              4.31 0.936 0.041 0.        3       CD79A   
##  8 9.48e-271       3.59 0.622 0.022 1.30e-266 3       TCL1A   
##  9 1.17e-178       2.97 0.957 0.241 1.60e-174 4       CCL5    
## 10 4.93e-169       3.01 0.595 0.056 6.76e-165 4       GZMK    
## 11 3.51e-184       3.31 0.975 0.134 4.82e-180 5       FCGR3A  
## 12 2.03e-125       3.09 1     0.315 2.78e-121 5       LST1    
## 13 1.05e-265       4.89 0.986 0.071 1.44e-261 6       GZMB    
## 14 6.82e-175       4.92 0.958 0.135 9.36e-171 6       GNLY    
## 15 1.48e-220       3.87 0.812 0.011 2.03e-216 7       FCER1A  
## 16 1.67e- 21       2.87 1     0.513 2.28e- 17 7       HLA-DPB1
## 17 7.73e-200       7.24 1     0.01  1.06e-195 8       PF4     
## 18 3.68e-110       8.58 1     0.024 5.05e-106 8       PPBP
6.1 比较某个基因在几个cluster之间的表达量

小提琴图

VlnPlot(pbmc, features = c("MS4A1", "CD79A"))

#可以拿count数据画
VlnPlot(pbmc, features = c("NKG7", "PF4"), slot = "counts", log = TRUE)

在umap图上标记

FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"))

top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_log2FC)
6.2 marker基因的热图
DoHeatmap(pbmc, features = top10$gene) + NoLegend()

7. 根据marker基因确定细胞

在示例数据里,这一步找到哪些基因对应什么细胞的表格,是现成的。我问了豆豆,上哪里找这样的对应信息呢?豆豆说有专门的R包–singleR来做细胞注释,并且需要根据这些注释多次调整前面的参数,使聚类的结果与生物学意义对接上。标准操作会R语言就能搞定,生物学意义还需要慢慢磨啊。整理完三大R包,我就研究singleR。

new.cluster.ids <- c("Naive CD4 T", 
                     "CD14+ Mono", 
                     "Memory CD4 T",
                     "B", 
                     "CD8 T", 
                     "FCGR3A+ Mono", 
                     "NK", 
                     "DC", 
                     "Platelet")

names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, 
        reduction = "umap", 
        label = TRUE, 
        pt.size = 0.5) + NoLegend()

最后

以上就是安静鲜花为你收集整理的单细胞三大R包之Seurat的全部内容,希望文章能够帮你解决单细胞三大R包之Seurat所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部