概述
只有一百行左右代码,应该还是比较好理解的。
首先看一下结果,
The end error is:[0.05344101]
发现还是不错的。如果不想看讲解,就直接跳到文末,有所有的代码,安装numpy库就能够跑。
二进制加法
这个没啥好说的,就是逢二进一,不知道的就看看计算机组成原理的相关内容吧。
RNN主要学两件事,一个是前一位的进位,一个是当前位的加法操作。只告诉当前阶段和前一阶段的计算结果,让网络自己学习加法和进位操作。
具体代码
既然是神经网络,肯定就非线性的,首先是sigmoid函数,这个要是不清楚,就看看相关博客了解一下。
反向传播的时候需要sigmoid函数的导数值,所以把两个函数就直接贴在下面了。
# 前向传播
def sigmoid(in_x):
output = 1 / (1 + np.exp(-in_x))
return output
# 反向传播
def sigmoid_output_to_derivative(output):
return output * (1 - output)
定义一个字典,因为待会儿要进行十进制和二进制之间的转换,我们用字典进行存储他们之间的对应关系。
(在这里我们只选用八位二进制)
int2binary = {
}
binary_dim = 8
largest_number = pow(2, binary_dim)
binary = np.unpackbits(
np.array([range(largest_number)], dtype=np.uint8).T, axis=1)
for i in range(largest_number):
int2binary[i] = binary[i]
再接着就是对我们的RNN进行初始化操作。
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
接着是生成神经网络各层的权重值以及反向传播时对权值矩阵进行更新的存储。
# 生成神经网络各层的权重值(在0,1之间)
synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1
synapse_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) - 1
# 反向传播对权重值的矩阵进行更新
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
RNN
我们进行10万次的迭代训练。
我们进行的是加法,所以需要将值找到。最大取八位,所以a, b, c都不能超过,因为a+b=c,所以a, b不能超过最大的一半。其中largest_number表示8位二进制数对应的最大的十进制数值。
# 最大取八位,所以a, b, c都不能超过,因为a+b=c,所以a, b不能超过最大的一半
a_int = np.random.randint(largest_number / 2)
a = int2binary[a_int]
b_int = np.random.randint(largest_number / 2)
b = int2binary[b_int]
c_int = a_int + b_int
c = int2binary[c_int]
我们定义一个d来存储我们的预测值与实际值c进行比较,判断网络的能力。并且定义一个overallError来存储error值,并将初值设为0。
d = np.zeros_like(c)
overallError = 0
最后我们在进行反向传播的时候,会计算一个loss值,在训练网络的过程中,我们需要计算 w 1 , w 0 w_1,w_0
最后
以上就是活力薯片为你收集整理的使用Python建立RNN实现二进制加法二进制加法具体代码最终代码的全部内容,希望文章能够帮你解决使用Python建立RNN实现二进制加法二进制加法具体代码最终代码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复