概述
1.直方图
# simple histogram
hist(mtcars$mpg) #未指定任何选项时的默认图形
# colored histogram with specified number of bins
hist(mtcars$mpg,
breaks=12, #分组个数
col="red", #红色
xlab="Miles Per Gallon", # x轴标签
main="Colored histogram with 12 bins")# 标题
# colored histogram with rug plot, frame, and specified number of bins
hist(mtcars$mpg,
freq=FALSE,
breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Histogram, rug plot, density curve")
rug(jitter(mtcars$mpg))
lines(density(mtcars$mpg), col="blue", lwd=2)
# histogram with superimposed normal curve (Thanks to Peter Dalgaard)
x <- mtcars$mpg
h<-hist(x,
breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Histogram with normal curve and box")
xfit<-seq(min(x),max(x),length=40)
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
box()
2.核密度图
d <- density(mtcars$mpg) # returns the density data
plot(d) # plots the results
d <- density(mtcars$mpg)
plot(d, main="Kernel Density of Miles Per Gallon")
polygon(d, col="red", border="blue")
rug(mtcars$mpg, col="brown")
参考:《R in action–Data Analysis and Graphics with R》
最后
以上就是老实花卷为你收集整理的R中的直方图和核密度图绘制的全部内容,希望文章能够帮你解决R中的直方图和核密度图绘制所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复