我是靠谱客的博主 舒服日记本,这篇文章主要介绍第九周--三元组存储稀疏矩阵,现在分享给大家,希望可以做个参考。

复制代码
1
2
3
4
5
6
7
8
/ 作 者:孙子策 完成日期:2016.10.27 问题描述:提示1:两个行数、列数相同的矩阵可以相加 提示2:充分利用已经建立好的算法库解决问题 /


头文件:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#ifndef TUP_H_INCLUDED #define TUP_H_INCLUDED #define M 6 #define N 7 #define MaxSize 100 //矩阵中非零元素最多个数 typedef int ElemType; typedef struct { int r; //行号 int c; //列号 ElemType d; //元素值 } TupNode; //三元组定义 typedef struct { int rows; //行数 int cols; //列数 int nums; //非零元素个数 TupNode data[MaxSize]; } TSMatrix; //三元组顺序表定义 void CreatMat(TSMatrix &t,ElemType A[M][N]); //从一个二维稀疏矩阵创建其三元组表示 bool Value(TSMatrix &t,ElemType x,int i,int j); //三元组元素赋值 bool Assign(TSMatrix t,ElemType &x,int i,int j); //将指定位置的元素值赋给变量 void DispMat(TSMatrix t);//输出三元组 void TranTat(TSMatrix t,TSMatrix &tb);//矩阵转置 bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c); #endif // TUP_H_INCLUDED

main.cpp:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <stdio.h> #include "a.h" int main() { TSMatrix ta,tb,tc; int A[M][N]= { {0,0,1,0,0,0,0}, {0,2,0,0,0,0,0}, {3,0,0,0,0,0,0}, {0,0,0,5,0,0,0}, {0,0,0,0,6,0,0}, {0,0,0,0,0,7,4} }; int B[M][N]= { {0,0,10,0,0,0,0}, {0,0,0,20,0,0,0}, {0,0,0,0,0,0,0}, {0,0,0,50,0,0,0}, {0,0,20,0,0,0,0}, {0,0,0,10,0,0,4} }; CreatMat(ta,A); CreatMat(tb,B); printf("A:n"); DispMat(ta); printf("B:n"); DispMat(tb); if(MatAdd(ta, tb, tc)) { printf("A+B:n"); DispMat(tc); } else { printf("相加失败n"); } return 0; }


.cpp代码:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include "stdio.h" #include "a.h" void CreatMat(TSMatrix &t,ElemType A[M][N]) //从一个二维稀疏矩阵创建其三元组表示 { int i,j; t.rows=M; t.cols=N; t.nums=0; for (i=0; i<M; i++) { for (j=0; j<N; j++) if (A[i][j]!=0) //只存储非零元素 { t.data[t.nums].r=i; t.data[t.nums].c=j; t.data[t.nums].d=A[i][j]; t.nums++; } } } bool Value(TSMatrix &t,ElemType x,int i,int j) //三元组元素赋值 { int k=0,k1; if (i>=t.rows || j>=t.cols) return false; //失败时返回false while (k<t.nums && i>t.data[k].r) k++; //查找行 while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列 if (t.data[k].r==i && t.data[k].c==j) //存在这样的元素 t.data[k].d=x; else //不存在这样的元素时插入一个元素 { for (k1=t.nums-1; k1>=k; k1--) { t.data[k1+1].r=t.data[k1].r; t.data[k1+1].c=t.data[k1].c; t.data[k1+1].d=t.data[k1].d; } t.data[k].r=i; t.data[k].c=j; t.data[k].d=x; t.nums++; } return true; //成功时返回true } bool Assign(TSMatrix t,ElemType &x,int i,int j) //将指定位置的元素值赋给变量 { int k=0; if (i>=t.rows || j>=t.cols) return false; //失败时返回false while (k<t.nums && i>t.data[k].r) k++; //查找行 while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列 if (t.data[k].r==i && t.data[k].c==j) x=t.data[k].d; else x=0; //在三元组中没有找到表示是零元素 return true; //成功时返回true } void DispMat(TSMatrix t) //输出三元组 { int i; if (t.nums<=0) //没有非零元素时返回 return; printf("t%dt%dt%dn",t.rows,t.cols,t.nums); printf("t------------------n"); for (i=0; i<t.nums; i++) printf("t%dt%dt%dn",t.data[i].r,t.data[i].c,t.data[i].d); } void TranTat(TSMatrix t,TSMatrix &tb) //矩阵转置 { int p,q=0,v; //q为tb.data的下标 tb.rows=t.cols; tb.cols=t.rows; tb.nums=t.nums; if (t.nums!=0) //当存在非零元素时执行转置 { for (v=0; v<t.cols; v++) //tb.data[q]中的记录以c域的次序排列 for (p=0; p<t.nums; p++) //p为t.data的下标 if (t.data[p].c==v) { tb.data[q].r=t.data[p].c; tb.data[q].c=t.data[p].r; tb.data[q].d=t.data[p].d; q++; } } } bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c) { int i,j; ElemType va,vb,vc; if (a.rows!=b.rows || a.cols!=b.cols) return false; //行数或列数不等时不能进行相加运算 c.rows=a.rows; c.cols=a.cols; //c的行列数与a的相同 c.nums=0; for(i=0; i<M; i++) for(j=0; j<N; j++) { Assign(a,va,i,j); Assign(b,vb,i,j); vc=va+vb; if(vc) Value(c,vc,i,j); } return true; }



知识点总结:

判断是否为0以及相加后是否为0等情况要多重分析。

心得体会:
还是有些不明白。

最后

以上就是舒服日记本最近收集整理的关于第九周--三元组存储稀疏矩阵的全部内容,更多相关第九周--三元组存储稀疏矩阵内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部