概述
我们来先了解一下什么是最小顶点覆盖;
图G的顶点覆盖是一个顶点集合V,使得G中的每一条边都接触V中的至少一个顶点。我们称集合V覆盖了G的边。最小顶点覆盖是用最少的顶点来覆盖所有的边。顶点覆盖数是最小顶点覆盖的大小。
相应地,图G的边覆盖是一个边集合E,使得G中的每一个顶点都接触E中的至少一条边。
如果只说覆盖,则通常是指顶点覆盖,而不是边覆盖。
在二分图中 :最大匹配数=最小顶点覆盖数;求二分图最大匹配可以用最大流(Maximal Flow)或者匈牙利算法(Hungarian Algorithm)
所以下面介绍主要一下匈牙利算法:
匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。
在介绍
匈牙利算法之前还是先提一下几个概念,下面M是G的一个匹配。
M-交错路:p是G的一条通路,如果p中的边为属于M中的边与不属于M但属于G中的边交替出现,则称p是一条M-交错路。如:路径(X3,Y2,X1,Y4),(Y1,X2,Y3)。
M-饱和点:对于v∈V(G),如果v与M中的某条边关联,则称v是M-饱和点,否则称v是非M-饱和点。如X1,X2,Y1,Y2都属于M-饱和点,而其它点都属于非M-饱和点。
M-可
增广路:p是一条M-交错路,如果p的起点和终点都是非M-饱和点,则称p为M-可增广路。如(X3,Y2,X1,Y4)。(不要和流网络中的
增广路径弄混了)
求最大
匹配的一种
显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的
时间复杂度为边数的指数级
函数。因此,需要寻求一种更加高效的算法。下面介绍用
增广路求最大
匹配的方法(称作
匈牙利算法,
匈牙利
数学家Edmonds于1965年提出)。
增广路的定义(也称增广轨或交错轨):
若P是图G中一条连通两个未
匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条
增广路径。
由
增广路的定义可以推出下述三个结论:
1-P的路径个数必定为奇数,第一条边和最后一条边都不属于M。
2-将M和P进行取反操作可以得到一个更大的
匹配M’。
3-M为G的最大
匹配当且仅当不存在M的
增广路径。
算法轮廓:
⑴置M为空
⑵找出一条
增广路径P,通过异或操作获得更大的
匹配M’代替M
⑶重复⑵操作直到找不出
增广路径为止
接下来说说这题,经典的最小顶点覆盖题;
题意:
鲍勃喜欢玩电脑游戏,特别是战略游戏,但有时他无法找到解决方案,速度不够快,那么他很伤心。
现在,他有以下的问题。
他必须捍卫一个中世纪的城市,形成了树的道路。
他把战士的最低数量的节点上,使他们可以观察所有的边。
你能帮助他吗?
士兵,鲍勃把一个给定的树,你的程序应该发现的最小数目。
输入文件包含多个数据集的文本格式。
题解:可以用匈牙利算法求解;用stl模版中的向量容器存放双向邻接表;
注意:1.本题中编号是从0开始;所以ret[]应初始化为-1;
2:向量要清零;
代码实现:
#include<stdio.h>
#include<cstring>
#include<vector>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
#define MAX 1505
int visit[MAX];//标记节点是否被访问过;
int ret[MAX];//标记n个节点的增广节点的编号
vector<int>map[MAX];//用stl模版中的向量存放邻接表
int find(int cur )//找增广路径
{
for(int i=0;i<map[cur].size();i++)
{
int j=map[cur][i];
if(!visit[j])//若j与cur相邻,且没有被标记
{
visit[j]=1;
if(ret[j]==-1||find(ret[j]))//如果j未在前一个匹配M中,或者,j在匹配M中,但从j相邻的节点出发可以找到增广路
{
ret[j]=cur;//则把cur放到匹配M中;
return 1;
}
}
}
return 0;
}
int main()
{
// freopen("input.txt","r",stdin);
int n,x,m,y;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++)map[i].clear();//注意要清零;
for(int i=0;i<n;i++)
{
scanf("%d:(%d)",&x,&m);
for(int j=0;j<m;j++)
{
scanf("%d",&y);
map[x].push_back(y);//用向量存放双向邻接表
map[y].push_back(x);
}
}
int sum=0;
memset(ret,-1,sizeof(ret));//因为节点从0开始,所以要赋值为-1;
for(int i=0;i<n;i++)//
{
memset(visit,0,sizeof(visit));
sum+=find(i);//若有增广路,匹配数则加一
}
printf("%dn",sum/2);//最小顶点覆盖 == 最大匹配(双向图)/2;
}
return 0;
}
最后
以上就是斯文小霸王为你收集整理的HDU1054Strategic Game(最小顶点覆盖数)的全部内容,希望文章能够帮你解决HDU1054Strategic Game(最小顶点覆盖数)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复