概述
目录
提前总结
线程
进程
其他
什么是并发编程?
1. 进程和线程
1.1 多线程
1.2 多进程
1.3 GIL锁
线程
1. 多线程开发
2. 线程安全
3. 线程锁
4.死锁
5.线程池
6.单例模式(会手写)
总结
进程
1. 多进程开发
1.1 进程介绍
1.2 常见功能
2.进程间数据的共享
2.1 共享
2.2 交换
3. 进程锁
4. 进程池
5. 协程
总结
提前总结
出现的代码提前总结(代码有点乱,主要用于快速复习,详情请跳过向下看,且后面会有案例练习)
线程
import os
import time
import threading
from concurrent.futures import ThreadPoolExecutor
lock = threading.RLock()
lock.acquire()
lock.release()
def task(num):
with lock:
print(os.getpid(), os.getppid(), threading.current_thread().getName()) # 或者threading.current_thread().name
t_list = []
for i in range(5):
t = threading.Thread(target=task, args=(1,))
t_list.append(t)
t.setDaemon(False) # False默认等待
t.setName('线程{}号'.format(i))
t.start()
# 可以用这种方式等待多个线程结束再向下运行
for i in t_list:
i.join()
print('下面是线程池')
time.sleep(1)
def fuc(st, num):
global count
num += 1
count += 1
print(num) # 等于1 只执行一次 要么就global
print(count)
return st
def outer(st):
def done(response):
print(response.result() + st)
return done
pool = ThreadPoolExecutor(4)
num = 0
count = 0
for i in range(6): #一样会有输出混乱问题
future = pool.submit(fuc, '你好', num)
future.add_done_callback(outer('啊'))
pool.shutdown(True)
print(num) # 还等于0
print(count)# 结果为6
#单例模式
print('单例模式')
time.sleep(1)
class Singleton:
instance = None
lock = threading.RLock()
def __init__(self, name):
self.name = name
def __new__(cls, *args, **kwargs):
if cls.instance:
return cls.instance
with cls.lock:
if cls.instance:
return cls.instance
time.sleep(0.1)
cls.instance = object.__new__(cls)
return cls.instance
def task():
obj = Singleton('x')
print(obj)
for i in range(10):
t = threading.Thread(target=task)
t.start()
# 执行1000行代码
data = Singleton('asdfasdf')
print(data)
进程
import os
import time
import threading
import multiprocessing # 或者用from multiprocessing import Process 都一样
from concurrent.futures import ProcessPoolExecutor
#print('以下是进程代码') 这行代码如果不注释的话会执行很多遍 此为多进程,每个进程相当于有这个一个python文件
def task(xx):
time.sleep(1) #为了让后面输出正确的线程个数,正常为4 如果太快,会显示只有该进程一个主线程
def fuc1(lock):
lock.acquire()
for i in range(3):
t = threading.Thread(target=task, args=(1,))
t.start()
print(os.getpid(), os.getppid(), multiprocessing.current_process().name)
print('该进程有{}个线程n'.format(len(threading.enumerate())))#主线程加后加的线程
lock.release()
def fuc2(num,url):
return '你好'
def outer(xx):
def done(response):
print(response.result())
return done
if __name__ == '__main__':
multiprocessing.set_start_method('spawn')
lock = multiprocessing.RLock()
cpu_num = multiprocessing.cpu_count() # 系统cpu个数 后面应该减去一个主进程
p_list = []
for i in range(cpu_num - 1):
p = multiprocessing.Process(target=fuc1, args=(lock,)) #进程不一样了 数据不共享 故args传递的地址肯定不一样
p_list.append(p)
p.name = '进程{}'.format(i)
p.daemon = False # 默认等待
p.start()
for i in p_list:
i.join()
print('n以下是进程池代码')
pool = ProcessPoolExecutor(4)
for i in range(5):
future = pool.submit(fuc2, 2, 'xxx/xxx')
future.add_done_callback(outer('e'))
pool.shutdown(True)
进程间的数据共享请点击目录跳转,进程池章节里中也会有数据共享案例。以下为个人常用两种方式(Manager()与管道,其实还可以通过进程池的回调函数来完成)。
from multiprocessing import Process, Manager
def f(d, l):
d[1] = '1'
d['2'] = 2
d[0.25] = None
l.append(666)
if __name__ == '__main__':
with Manager() as manager:
d = manager.dict()
l = manager.list()
p = Process(target=f, args=(d, l))
p.start()
p.join()
import multiprocessing
def task(q):
for i in range(10):
q.put(i)
if __name__ == '__main__':
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=task, args=(queue,))
p.start()
p.join()
print("主进程")
print(queue.get())
print(queue.get())
print(queue.get())
print(queue.get())
print(queue.get())
其他
- 一般不用多线程处理计算密集型,一个原因是会发生数据混乱,就算加上了锁使数据不再混乱,因为cpython有GIL锁的原因,一次只调用一个线程,计算依然可以看作是在一个线程下按顺序走完的,这样意义不大,所以一般用于处理IO密集型。同时,并发print还会发生输出混乱。
- Python3中官方才正式提供线程池。
- 进程池中add_done_callback是在主进程中完成的,而线程池中的add_done_callback是在子线程中完成的。所以也可以利用这一点进行进程之间的数据集合。
- 注意进程线程和主进程线程的执行顺序关系,是否进行了等待,多数情况下数据为空是因为主程序没有等待子程序执行完便向下执行了。
- 进程由于windows系统是spawn模式,需要将参数传递进去(注:spawn模式不可传递线程锁,file_object,但是进程锁可以),传递进去的参数是被拷贝了的一份,无论是可变类型还是不可变类型,无论是锁还是文件,地址都会发生改变,因为是多个进程,相当于执行了多个python文件,函数外的其他东西如‘ print('你好') ’也会根据进程的多少执行很多次。 且spawn模式下的多进程要以if __name__ == '__main__':启动。
- 多进程传递数据,常用三种方式:Manager()、管道,进程池的回调函数(别忘pool.shutdown()后再向下执行 )。
- 如果在进程池中要使用进程锁,则需要基于Manager中的Lock和RLock来实现。
- 注意很多参数都是函数名,不要不小心敲回车补全成函数执行,一般不会报错。
- 一把锁无论是否处于上锁状态地址都不会改变。
- 即使将主进程中的进程锁通过p = multiprocessing.Process(target=task, args=(lock,))方式传递给子进程,虽然都会拷贝一份地址发生改变,但子进程依然会被该锁限制(且如果在主进程中就加锁了,拷贝的锁也是被申请走的状态,子进程会阻塞在拷贝后申请锁的那一步,不会因为有RLock就能嵌套或者多次申请了),不然为什么会叫进程锁。Manager()传递的参数同理,地址不一样(进程数据默认是不共享的),但实际上数据共享。
- 有时候也会向子进程中传递主线程的锁(此时一定是fork模式,且不用传递参数了,会直接拷贝一份),如果主进程的主线程上了锁,子进程的主线程一样是上了锁的。此时RLock可以嵌套不要搞混。
- 单纯的打印lock,进程锁(<RLock(None, 0)>,<RLock(MainProcess, 1)>)与线程锁(<unlocked _thread.RLock object owner=0 count=0 at 0x000001EA1F485B10>,<locked _thread.RLock object owner=12048 count=1 at 0x000001EA1F485B10>)不是一个东西。
- 即线程锁锁的是统一进程下的线程,进程锁锁的是所有进程(包括主进程)
- 多进程如果觉得加锁麻烦,Queues和Pipes不需要加锁,此外由于内部像列表、字典等常见对象的线程数据安全,得益于GIL,Manager().dict()或者Manager().list()的一些操作也是安全的。
- 直接执行os.getpid() os.getppid()结果不一样 虽然程序是主进程但其实只是python中的主进程。
什么是并发编程?
并发编程,提升代码执行的效率。原来代码执行需要20分钟,学习并发编程后可以加快到1分钟执行完毕。
1. 进程和线程
以前我们开发的程序中所有的行为都只能通过串行的形式运行,排队逐一执行,前面未完成,后面也无法继续。例如:
import time
result = 0
for i in range(100000000):
result += i
print(result)
import time
import requests
url_list = [
("东北F4模仿秀.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0300f570000bvbmace0gvch7lo53oog"),
("卡特扣篮.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f3e0000bv52fpn5t6p007e34q1g"),
("罗斯mvp.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f240000buuer5aa4tij4gv6ajqg")
]
print(time.time())
for file_name, url in url_list:
res = requests.get(url)
with open(file_name, mode='wb') as f:
f.write(res.content)
print(file_name, time.time())
进程和线程:
线程,是计算机中可以被cpu调度的最小单元(真正在工作)。
进程,是计算机资源分配的最小单元(进程为线程提供资源)。一个进程中可以有多个线程,同一个进程中的线程可以共享此进程中的资源。
上述串行的代码示例就是一个程序,在使用python xx.py 运行时,内部就创建一个进程(主进程),在进程中创建了一个线程(主线程),由线程逐行运行代码。
通过 进程 和 线程 都可以将 串行
的程序变为并发
,对于上述示例来说就是同时下载三个视频,这样很短的时间内就可以下载完成。
1.1 多线程
基于多线程对上述串行示例进行优化:
-
一个工厂,创建一个车间,这个车间中创建 3个工人,并行处理任务。
-
一个程序,创建一个进程,这个进程中创建 3个线程,并行处理任务。
import time
import requests
import threading
"""
def func(a1,a2,a3):
pass
t = threaing.Thread(target=func,args=(11,22,33))
t.start()
"""
url_list = [
("东北F4模仿秀.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0300f570000bvbmace0gvch7lo53oog"),
("卡特扣篮.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f3e0000bv52fpn5t6p007e34q1g"),
("罗斯mvp.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f240000buuer5aa4tij4gv6ajqg")
]
def task(file_name, video_url):
res = requests.get(video_url)
with open(file_name, mode='wb') as f:
f.write(res.content)
print(time.time())
for name, url in url_list:
# 创建线程,让每个线程都去执行task函数(参数不同)
t = threading.Thread(target=task, args=(name, url))
t.start()
1.2 多进程
基于多进程对上述串行示例进行优化:
-
一个工厂,创建 三个车间,每个车间 一个工人(共3人),并行处理任务。
-
一个程序,创建 三个进程,每个进程 一个线程(共3人),并行处理任务。
import time
import requests
import multiprocessing
# 进程创建之后,在进程中还会创建一个线程。
# t = multiprocessing.Process(target=函数名, args=(name, url))
# t.start()
url_list = [
("东北F4模仿秀.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0300f570000bvbmace0gvch7lo53oog"),
("卡特扣篮.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f3e0000bv52fpn5t6p007e34q1g"),
("罗斯mvp.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f240000buuer5aa4tij4gv6ajqg")
]
def task(file_name, video_url):
res = requests.get(video_url)
with open(file_name, mode='wb') as f:
f.write(res.content)
print(time.time())
if __name__ == '__main__':
print(time.time())
for name, url in url_list:
t = multiprocessing.Process(target=task, args=(name, url))
t.start()
1.3 GIL锁
GIL, 全局解释器锁(Global Interpreter Lock),是CPython解释器特有一个玩意,让一个进程中同一个时刻只能有一个线程可以被CPU调用。
如果程序想利用 计算机的多核优势,让CPU同时处理一些任务,适合用多进程开发(即使资源开销大)。
如果程序不利用 计算机的多核优势,适合用多线程开发。
常见的程序开发中,计算操作需要使用CPU多核优势,IO操作不需要利用CPU的多核优势,所以,就有这一句话:
-
计算密集型,用多进程,例如:大量的数据计算【累加计算示例】。
-
IO密集型,用多线程,例如:文件读写、网络数据传输【下载抖音视频示例】。
累加计算示例(计算密集型):
-
串行处理
import time start = time.time() result = 0 for i in range(100000000): result += i print(result) end = time.time() print("耗时:", end - start) # 耗时: 9.522780179977417
-
多进程处理
import time import multiprocessing def task(start, end, queue): result = 0 for i in range(start, end): result += i queue.put(result) if __name__ == '__main__': queue = multiprocessing.Queue() start_time = time.time() p1 = multiprocessing.Process(target=task, args=(0, 50000000, queue)) p1.start() p2 = multiprocessing.Process(target=task, args=(50000000, 100000000, queue)) p2.start() v1 = queue.get(block=True) #阻塞 v2 = queue.get(block=True) #阻塞 print(v1 + v2) end_time = time.time() print("耗时:", end_time - start_time) # 耗时: 2.6232550144195557
当然,在程序开发中 多线程 和 多进程 是可以结合使用,例如:创建2个进程(建议与CPU个数相同),每个进程中创建3个线程。
import multiprocessing
import threading
def thread_task():
pass
def task(start, end):
t1 = threading.Thread(target=thread_task)
t1.start()
t2 = threading.Thread(target=thread_task)
t2.start()
t3 = threading.Thread(target=thread_task)
t3.start()
if __name__ == '__main__':
p1 = multiprocessing.Process(target=task, args=(0, 50000000))
p1.start()
p2 = multiprocessing.Process(target=task, args=(50000000, 100000000))
p2.start()
线程
1. 多线程开发
import threading
def task(arg):
pass
# 创建一个Thread对象(线程),并封装线程被CPU调度时应该执行的任务和相关参数。
t = threading.Thread(target=task,args=('xxx',))
# 线程准备就绪(等待CPU调度),代码继续向下执行。
t.start()
print("继续执行...") # 主线程执行完所有代码,不结束(等待子线程)
线程的常见方法:
-
t.start()
,当前线程准备就绪(等待CPU调度,具体时间是由CPU来决定)。import threading loop = 10000000 number = 0 def _add(count): global number for i in range(count): number += 1 t = threading.Thread(target=_add,args=(loop,)) t.start() print(number)
-
t.join()
,等待当前线程的任务执行完毕后再向下继续执行。import threading number = 0 def _add(): global number for i in range(10000000): number += 1 t = threading.Thread(target=_add) t.start() t.join() # 主线程等待中... print(number)
import threading number = 0 def _add(): global number for i in range(10000000): number += 1 def _sub(): global number for i in range(10000000): number -= 1 t1 = threading.Thread(target=_add) t2 = threading.Thread(target=_sub) t1.start() t1.join() # t1线程执行完毕,才继续往后走 t2.start() t2.join() # t2线程执行完毕,才继续往后走 print(number)
import threading loop = 10000000 number = 0 def _add(count): global number for i in range(count): number += 1 def _sub(count): global number for i in range(count): number -= 1 t1 = threading.Thread(target=_add, args=(loop,)) t2 = threading.Thread(target=_sub, args=(loop,)) t1.start() t2.start() t1.join() # t1线程执行完毕,才继续往后走 t2.join() # t2线程执行完毕,才继续往后走 print(number)
注:此时数据混乱
-
t.setDaemon(布尔值)
,守护线程(必须放在start之前)-
t.setDaemon(True)
,设置为守护线程,主线程执行完毕后,子线程也自动关闭。 -
t.setDaemon(False)
,设置为非守护线程,主线程等待子线程,子线程执行完毕后,主线程才结束。(默认)
import threading import time def task(arg): time.sleep(5) print('任务') t = threading.Thread(target=task, args=(11,)) t.setDaemon(True) # True/False t.start() print('END')
-
-
线程名称的设置和获取
import threading def task(arg): # 获取当前执行此代码的线程 name = threading.current_thread().getName() print(name) for i in range(10): t = threading.Thread(target=task, args=(11,)) t.setName('本伟-{}'.format(i)) t.start()
-
自定义线程类,直接将线程需要做的事写到run方法中。
import threading class MyThread(threading.Thread): def run(self): print('执行此线程', self._args) t = MyThread(args=(100,)) t.start() import requests import threading class DouYinThread(threading.Thread): def run(self): file_name, video_url = self._args res = requests.get(video_url) with open(file_name, mode='wb') as f: f.write(res.content) url_list = [ ("东北F4模仿秀.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0300f570000bvbmace0gvch7lo53oog"), ("卡特扣篮.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f3e0000bv52fpn5t6p007e34q1g"), ("罗斯mvp.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f240000buuer5aa4tij4gv6ajqg") ] for item in url_list: t = DouYinThread(args=(item[0], item[1])) t.start()
2. 线程安全
一个进程中可以有多个线程,且线程共享所有进程中的资源。
多个线程同时去操作一个"东西",可能会存在数据混乱的情况,例如:
-
示例1
import threading
loop = 10000000
number = 0
def _add(count):
global number
for i in range(count):
number += 1
def _sub(count):
global number
for i in range(count):
number -= 1
t1 = threading.Thread(target=_add, args=(loop,))
t2 = threading.Thread(target=_sub, args=(loop,))
t1.start()
t2.start()
t1.join() # t1线程执行完毕,才继续往后走
t2.join() # t2线程执行完毕,才继续往后走
print(number)
import threading
lock_object = threading.RLock()
loop = 10000000
number = 0
def _add(count):
lock_object.acquire() # 加锁
global number
for i in range(count):
number += 1
lock_object.release() # 释放锁
def _sub(count):
lock_object.acquire() # 申请锁(等待)
global number
for i in range(count):
number -= 1
lock_object.release() # 释放锁
t1 = threading.Thread(target=_add, args=(loop,))
t2 = threading.Thread(target=_sub, args=(loop,))
t1.start()
t2.start()
t1.join() # t1线程执行完毕,才继续往后走
t2.join() # t2线程执行完毕,才继续往后走
print(number)
此时共用同一把锁,谁用到谁申请,用完一次再释放。
-
示例2:
import threading num = 0 def task(): global num for i in range(1000000): num += 1 print(num) for i in range(2): t = threading.Thread(target=task) t.start()
import threading num = 0 lock_object = threading.RLock() def task(): print("开始") lock_object.acquire() # 第1个抵达的线程进入并上锁,其他线程就需要再此等待。 global num for i in range(1000000): num += 1 lock_object.release() # 线程出去,并解开锁,其他线程就可以进入并执行了 print(num) for i in range(2): t = threading.Thread(target=task) t.start()
with上下文管理
import threading
num = 0
lock_object = threading.RLock()
def task():
print("开始")
with lock_object: # 基于上下文管理,内部自动执行 acquire 和 release
global num
for i in range(1000000):
num += 1
print(num)
for i in range(2):
t = threading.Thread(target=task)
t.start()
在开发的过程中要注意有些操作默认都是 线程安全的(内部集成了锁的机制),我们在使用的时无需再通过锁再处理,例如:
import threading
data_list = []
lock_object = threading.RLock()
def task():
print("开始")
for i in range(1000000):
data_list.append(i)
print(len(data_list))
for i in range(2):
t = threading.Thread(target=task)
t.start()
所以,要多注意看一些开发文档中是否标明线程安全。
3. 线程锁
在程序中如果想要自己手动加锁,一般有两种:Lock 和 RLock。
-
Lock,同步锁。
import threading
num = 0
lock_object = threading.Lock()
def task():
print("开始")
lock_object.acquire() # 第1个抵达的线程进入并上锁,其他线程就需要再此等待。
global num
for i in range(1000000):
num += 1
lock_object.release() # 线程出去,并解开锁,其他线程就可以进入并执行了
print(num)
for i in range(2):
t = threading.Thread(target=task)
t.start()
-
RLock,递归锁。
import threading
num = 0
lock_object = threading.RLock()
def task():
print("开始")
lock_object.acquire() # 第1个抵达的线程进入并上锁,其他线程就需要再此等待。
global num
for i in range(1000000):
num += 1
lock_object.release() # 线程出去,并解开锁,其他线程就可以进入并执行了
print(num)
for i in range(2):
t = threading.Thread(target=task)
t.start()
RLock支持多次申请锁和多次释放(嵌套);Lock不支持。例如:
import threading
import time
lock_object = threading.RLock()
def task():
print("开始")
lock_object.acquire()
lock_object.acquire()
print(123)
lock_object.release()
lock_object.release()
for i in range(3):
t = threading.Thread(target=task)
t.start()
import threading
lock = threading.RLock()
# 程序员A开发了一个函数,函数可以被其他开发者调用,内部需要基于锁保证数据安全。
def func():
with lock:
pass
# 程序员B开发了一个函数,可以直接调用这个函数。
def run():
print("其他功能")
func() # 调用程序员A写的func函数,内部用到了锁。
print("其他功能")
# 程序员C开发了一个函数,自己需要加锁,同时也需要调用func函数。
def process():
with lock:
print("其他功能")
func() # ----------------> 此时就会出现多次锁的情况,只有RLock支持(Lock不支持)。
print("其他功能")
4.死锁
死锁,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象。
import threading
num = 0
lock_object = threading.Lock()
def task():
print("开始")
lock_object.acquire() # 第1个抵达的线程进入并上锁,其他线程就需要再此等待。
lock_object.acquire() # 第1个抵达的线程进入并上锁,其他线程就需要再此等待。
global num
for i in range(1000000):
num += 1
lock_object.release() # 线程出去,并解开锁,其他线程就可以进入并执行了
lock_object.release() # 线程出去,并解开锁,其他线程就可以进入并执行了
print(num)
for i in range(2):
t = threading.Thread(target=task)
t.start()
import threading
import time
lock_1 = threading.Lock()
lock_2 = threading.Lock()
def task1():
lock_1.acquire()
time.sleep(1)
lock_2.acquire()
print(11)
lock_2.release()
print(111)
lock_1.release()
print(1111)
def task2():
lock_2.acquire()
time.sleep(1)
lock_1.acquire()
print(22)
lock_1.release()
print(222)
lock_2.release()
print(2222)
t1 = threading.Thread(target=task1)
t1.start()
t2 = threading.Thread(target=task2)
t2.start()
5.线程池
Python3中官方才正式提供线程池。
线程不是开的越多越好,开的多了可能会导致系统的性能更低了,例如:如下的代码是不推荐在项目开发中编写。
不建议:无限制的创建线程。
import threading
def task(video_url):
pass
url_list = ["www.xxxx-{}.com".format(i) for i in range(30000)]
for url in url_list:
t = threading.Thread(target=task, args=(url,))
t.start()
# 这种每次都创建一个线程去操作,创建任务的太多,线程就会特别多,可能效率反倒降低了。
建议:使用线程池
示例1:
import time
from concurrent.futures import ThreadPoolExecutor
# pool = ThreadPoolExecutor(100)
# pool.submit(函数名,参数1,参数2,参数...)
def task(video_url,num):
print("开始执行任务", video_url)
time.sleep(5)
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
url_list = ["www.xxxx-{}.com".format(i) for i in range(300)]
for url in url_list:
# 在线程池中提交一个任务,线程池中如果有空闲线程,则分配一个线程去执行,执行完毕后再将线程交还给线程池;如果没有空闲线程,则等待。
pool.submit(task, url,2)
print("END")
示例2:等待线程池的任务执行完毕。
import time
from concurrent.futures import ThreadPoolExecutor
def task(video_url):
print("开始执行任务", video_url)
time.sleep(5)
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
url_list = ["www.xxxx-{}.com".format(i) for i in range(300)]
for url in url_list:
# 在线程池中提交一个任务,线程池中如果有空闲线程,则分配一个线程去执行,执行完毕后再将线程交还给线程池;如果没有空闲线程,则等待。
pool.submit(task, url)
print("执行中...")
pool.shutdown(True) # 等待线程池中的任务执行完毕后,在继续执行
print('继续往下走')
示例3:任务执行完任务,再干点其他事。
import time
import random
from concurrent.futures import ThreadPoolExecutor, Future
def task(video_url):
print("开始执行任务", video_url)
time.sleep(2)
return random.randint(0, 10)
def done(response):
print("任务执行后的返回值", response.result())
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
url_list = ["www.xxxx-{}.com".format(i) for i in range(15)]
for url in url_list:
# 在线程池中提交一个任务,线程池中如果有空闲线程,则分配一个线程去执行,执行完毕后再将线程交还给线程池;如果没有空闲线程,则等待。
future = pool.submit(task, url)
future.add_done_callback(done) # 是子主线程执行
# 可以做分工,例如:task专门下载,done专门将下载的数据写入本地文件。
示例4:最终统一获取结果。
import time
import random
from concurrent.futures import ThreadPoolExecutor,Future
def task(video_url):
print("开始执行任务", video_url)
time.sleep(2)
return random.randint(0, 10)
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
future_list = []
url_list = ["www.xxxx-{}.com".format(i) for i in range(15)]
for url in url_list:
# 在线程池中提交一个任务,线程池中如果有空闲线程,则分配一个线程去执行,执行完毕后再将线程交还给线程池;如果没有空闲线程,则等待。
future = pool.submit(task, url)
future_list.append(future)
pool.shutdown(True)
for fu in future_list:
print(fu.result())
小案例:基于线程池下载豆瓣图片。
26044585,Hush,https://hbimg.huabanimg.com/51d46dc32abe7ac7f83b94c67bb88cacc46869954f478-aP4Q3V
19318369,柒十一,https://hbimg.huabanimg.com/703fdb063bdc37b11033ef794f9b3a7adfa01fd21a6d1-wTFbnO
15529690,Law344,https://hbimg.huabanimg.com/b438d8c61ed2abf50ca94e00f257ca7a223e3b364b471-xrzoQd
18311394,Jennah·,https://hbimg.huabanimg.com/4edba1ed6a71797f52355aa1de5af961b85bf824cb71-px1nZz
18009711,可洛爱画画,https://hbimg.huabanimg.com/03331ef39b5c7687f5cc47dbcbafd974403c962ae88ce-Co8AUI
30574436,花姑凉~,https://hbimg.huabanimg.com/2f5b657edb9497ff8c41132e18000edb082d158c2404-8rYHbw
17740339,小巫師,https://hbimg.huabanimg.com/dbc6fd49f1915545cc42c1a1492a418dbaebd2c21bb9-9aDqgl
18741964,桐末tonmo,https://hbimg.huabanimg.com/b60cee303f62aaa592292f45a1ed8d5be9873b2ed5c-gAJehO
30535005,TANGZHIQI,https://hbimg.huabanimg.com/bbd08ee168d54665bf9b07899a5c4a4d6bc1eb8af77a4-8Gz3K1
31078743,你的老杨,https://hbimg.huabanimg.com/c46fbc3c9a01db37b8e786cbd7174bbd475e4cda220f4-F1u7MX
25519376,尺尺寸,https://hbimg.huabanimg.com/ee29ee198efb98f970e3dc2b24c40d89bfb6f911126b6-KGvKes
21113978,C-CLong,https://hbimg.huabanimg.com/7fa6b2a0d570e67246b34840a87d57c16a875dba9100-SXsSeY
24674102,szaa,https://hbimg.huabanimg.com/0716687b0df93e8c3a8e0925b6d2e4135449cd27597c4-gWdv24
30508507,爱起床的小灰灰,https://hbimg.huabanimg.com/4eafdbfa21b2f300a7becd8863f948e5e92ef789b5a5-1ozTKq
12593664,yokozen,https://hbimg.huabanimg.com/cd07bbaf052b752ed5c287602404ea719d7dd8161321b-cJtHss
16899164,一阵疯,https://hbimg.huabanimg.com/0940b557b28892658c3bcaf52f5ba8dc8402100e130b2-G966Uz
847937,卩丬My㊊伴er彎,https://hbimg.huabanimg.com/e2d6bb5bc8498c6f607492a8f96164aa2366b104e7a-kWaH68
31010628,慢慢即漫漫,https://hbimg.huabanimg.com/c4fb6718907a22f202e8dd14d52f0c369685e59cfea7-82FdsK
13438168,海贼玩跑跑,https://hbimg.huabanimg.com/1edae3ce6fe0f6e95b67b4f8b57c4cebf19c501b397e-BXwiW6
28593155,源稚生,https://hbimg.huabanimg.com/626cfd89ca4c10e6f875f3dfe1005331e4c0fd7fd429-9SeJeQ
28201821,合伙哼哼,https://hbimg.huabanimg.com/f59d4780531aa1892b80e0ec94d4ec78dcba08ff18c416-769X6a
28255146,漫步AAA,https://hbimg.huabanimg.com/3c034c520594e38353a039d7e7a5fd5e74fb53eb1086-KnpLaL
30537613,配䦹,https://hbimg.huabanimg.com/efd81d22c1b1a2de77a0e0d8e853282b83b6bbc590fd-y3d4GJ
22665880,日后必火,https://hbimg.huabanimg.com/69f0f959979a4fada9e9e55f565989544be88164d2b-INWbaF
16748980,keer521521,https://hbimg.huabanimg.com/654953460733026a7ef6e101404055627ad51784a95c-B6OFs4
30536510,“西辞”,https://hbimg.huabanimg.com/61cfffca6b2507bf51a507e8319d68a8b8c3a96968f-6IvMSk
30986577,艺成背锅王,https://hbimg.huabanimg.com/c381ecc43d6c69758a86a30ebf72976906ae6c53291f9-9zroHF
26409800,CsysADk7,https://hbimg.huabanimg.com/bf1d22092c2070d68ade012c588f2e410caaab1f58051-ahlgLm
30469116,18啊全阿,https://hbimg.huabanimg.com/654953460733026a7ef6e101404055627ad51784a95c-B6OFs4
17473505,椿の花,https://hbimg.huabanimg.com/0e38d810e5a24f91ebb251fd3aaaed8bb37655b14844c-pgNJBP
19165177,っ思忆゜♪,https://hbimg.huabanimg.com/4815ea0e4905d0f3bb82a654b481811dadbfe5ce2673-vMVr0B
16059616,格林熊丶,https://hbimg.huabanimg.com/8760a2b08d87e6ed4b7a9715b1a668176dbf84fec5b-jx14tZ
30734152,sCWVkJDG,https://hbimg.huabanimg.com/f31a5305d1b8717bbfb897723f267d316e58e7b7dc40-GD3e22
24019677,虚无本心,https://hbimg.huabanimg.com/6fdfa9834abe362e978b517275b06e7f0d5926aa650-N1xCXE
16670283,Y-雨后天空,https://hbimg.huabanimg.com/a3bbb0045b536fc27a6d2effa64a0d43f9f5193c177f-I2vHaI
21512483,汤姆2,https://hbimg.huabanimg.com/98cc50a61a7cc9b49a8af754ffb26bd15764a82f1133-AkiU7D
16441049,笑潇啸逍小鱼,https://hbimg.huabanimg.com/ae8a70cd85aff3a8587ff6578d5cf7620f3691df13e46-lmrIi9
24795603,v,https://hbimg.huabanimg.com/a7183cc3a933aa129d7b3230bf1378fd8f5857846cc5-3tDtx3
29819152,妮玛士珍多,https://hbimg.huabanimg.com/ca4ecb573bf1ff0415c7a873d64470dedc465ea1213c6-RAkArS
19101282,陈勇敢❤,https://hbimg.huabanimg.com/ab6d04ebaff3176e3570139a65155856871241b58bc6-Qklj2E
28337572,爱意随风散,https://hbimg.huabanimg.com/117ad8b6eeda57a562ac6ab2861111a793ca3d1d5543-SjWlk2
17342758,幸运instant,https://hbimg.huabanimg.com/72b5f9042ec297ae57b83431123bc1c066cca90fa23-3MoJNj
18483372,Beau染,https://hbimg.huabanimg.com/077115cb622b1ff3907ec6932e1b575393d5aae720487-d1cdT9
22127102,栽花的小蜻蜓,https://hbimg.huabanimg.com/6c3cbf9f27e17898083186fc51985e43269018cc1e1df-QfOIBG
13802024,LoveHsu,https://hbimg.huabanimg.com/f720a15f8b49b86a7c1ee4951263a8dbecfe3e43d2d-GPEauV
22558931,白驹过隙丶梨花泪う,https://hbimg.huabanimg.com/e49e1341dfe5144da5c71bd15f1052ef07ba7a0e1296b-jfyfDJ
11762339,cojoy,https://hbimg.huabanimg.com/5b27f876d5d391e7c4889bc5e8ba214419eb72b56822-83gYmB
30711623,雪碧学长呀,https://hbimg.huabanimg.com/2c288a1535048b05537ba523b3fc9eacc1e81273212d1-nr8M4t
18906718,西霸王,https://hbimg.huabanimg.com/7b02ad5e01bd8c0a29817e362814666a7800831c154a6-AvBDaG
31037856,邵阳的小哥哥,https://hbimg.huabanimg.com/654953460733026a7ef6e101404055627ad51784a95c-B6OFs4
26830711,稳健谭,https://hbimg.huabanimg.com/51547ade3f0aef134e8d268cfd4ad61110925aefec8a-NKPEYX
import os
import requests
from concurrent.futures import ThreadPoolExecutor
def download(file_name, image_url):
res = requests.get(
url=image_url,
headers={
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36"
}
)
# 检查images目录是否存在?不存在,则创建images目录
if not os.path.exists("images"):
# 创建images目录
os.makedirs("images")
file_path = os.path.join("images", file_name)
# 2.将图片的内容写入到文件
with open(file_path, mode='wb') as img_object:
img_object.write(res.content)
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
with open("mv.csv", mode='r', encoding='utf-8') as file_object:
for line in file_object:
nid, name, url = line.split(",")
file_name = "{}.png".format(name)
pool.submit(download, file_name, url)
或者
import os
import requests
from concurrent.futures import ThreadPoolExecutor
def download(image_url):
res = requests.get(
url=image_url,
headers={
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36"
}
)
return res
def outer(file_name):
def save(response):
res = response.result()
# 写入本地
# # 检查images目录是否存在?不存在,则创建images目录
if not os.path.exists("images"):
# 创建images目录
os.makedirs("images")
file_path = os.path.join("images", file_name)
# # 2.将图片的内容写入到文件
with open(file_path, mode='wb') as img_object:
img_object.write(res.content)
return save
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
with open("mv.csv", mode='r', encoding='utf-8') as file_object:
for line in file_object:
nid, name, url = line.split(",")
file_name = "{}.png".format(name)
fur = pool.submit(download, url)
fur.add_done_callback(outer(file_name))
6.单例模式(会手写)
面向对象 + 多线程相关的一个面试题(以后项目和源码中会用到)。
之前写一个类,每次执行 类()
都会实例化一个类的对象。
class Foo:
pass
obj1 = Foo()
obj2 = Foo()
print(obj1,obj2)
以后开发会遇到单例模式,每次实例化类的对象时,都是最开始创建的那个对象,不再重复创建对象。
- 简单的实现单例模式
class Singleton:
instance = None
def __init__(self, name):
self.name = name
def __new__(cls, *args, **kwargs):
# 返回空对象
if cls.instance:
return cls.instance
cls.instance = object.__new__(cls)
return cls.instance
obj1 = Singleton('alex')
obj2 = Singleton('SB')
print(obj1,obj2)
- 多线程执行单例模式,有BUG
import threading
import time
class Singleton:
instance = None
def __init__(self, name):
self.name = name
def __new__(cls, *args, **kwargs):
if cls.instance:
return cls.instance
time.sleep(0.1)
cls.instance = object.__new__(cls)
return cls.instance
def task():
obj = Singleton('x')
print(obj)
for i in range(10):
t = threading.Thread(target=task)
t.start()
- 加锁解决BUG
import threading
import time
class Singleton:
instance = None
lock = threading.RLock()
def __init__(self, name):
self.name = name
def __new__(cls, *args, **kwargs):
with cls.lock:
if cls.instance:
return cls.instance
time.sleep(0.1)
cls.instance = object.__new__(cls)
return cls.instance
def task():
obj = Singleton('x')
print(obj)
for i in range(10):
t = threading.Thread(target=task)
t.start()
- 加判断,提升性能
import threading
import time
class Singleton:
instance = None
lock = threading.RLock()
def __init__(self, name):
self.name = name
def __new__(cls, *args, **kwargs):
if cls.instance:
return cls.instance
with cls.lock:
if cls.instance:
return cls.instance
time.sleep(0.1)
cls.instance = object.__new__(cls)
return cls.instance
def task():
obj = Singleton('x')
print(obj)
for i in range(10):
t = threading.Thread(target=task)
t.start()
# 执行1000行代码
data = Singleton('asdfasdf')
print(data)
总结
-
进程和线程的区别和应用场景。
-
什么是GIL锁
-
多线程和线程池的使用。
-
线程安全 & 线程锁 & 死锁
-
单例模式
进程
1. 多进程开发
进程是计算机中资源分配的最小单元;一个进程中可以有多个线程,同一个进程中的线程共享资源;
进程与进程之间则是相互隔离。如QQ与微信。
Python中通过多进程可以利用CPU的多核优势,计算密集型操作适用于多进程。
1.1 进程介绍
import multiprocessing
def task():
pass
if __name__ == '__main__':
p1 = multiprocessing.Process(target=task)
p1.start()
from multiprocessing import Process
def task(arg):
pass
def run():
p = multiprocessing.Process(target=task, args=('xxx',))
p.start()
if __name__ == '__main__':
run()
关于在Python中基于multiprocessiong模块操作的进程:
Depending on the platform, multiprocessing supports three ways to start a process. These start methods are
-
fork,【“拷贝”几乎所有资源】【支持文件对象/线程锁等传参】【unix】【任意位置开始】【快】
The parent process uses os.fork() to fork the Python interpreter. The child process, when it begins, is effectively identical to the parent process. All resources of the parent are inherited by the child process. Note that safely forking a multithreaded process is problematic.Available on Unix only. The default on Unix.
-
spawn,【run参数传必备资源】【不支持文件对象/线程锁等传参】【unix、win】【main代码块开始】【慢】
The parent process starts a fresh python interpreter process. The child process will only inherit those resources necessary to run the process object’s run() method. In particular, unnecessary file descriptors and handles from the parent process will not be inherited. Starting a process using this method is rather slow compared to using fork or forkserver.Available on Unix and Windows. The default on Windows and macOS.
-
forkserver,【run参数传必备资源】【不支持文件对象/线程锁等传参】【部分unix】【main代码块开始】
When the program starts and selects the forkserver start method, a server process is started. From then on, whenever a new process is needed, the parent process connects to the server and requests that it fork a new process. The fork server process is single threaded so it is safe for it to use os.fork(). No unnecessary resources are inherited.Available on Unix platforms which support passing file descriptors over Unix pipes.
import multiprocessing
multiprocessing.set_start_method("spawn")(前提是操作系统支持这样)
Changed in version 3.8: On macOS, the spawn start method is now the default. The fork start method should be considered unsafe as it can lead to crashes of the subprocess. See bpo-33725.
Changed in version 3.4: spawn added on all unix platforms, and forkserver added for some unix platforms. Child processes no longer inherit all of the parents inheritable handles on Windows.
On Unix using the spawn or forkserver start methods will also start a resource tracker process which tracks the unlinked named system resources (such as named semaphores or SharedMemory objects) created by processes of the program. When all processes have exited the resource tracker unlinks any remaining tracked object. Usually there should be none, but if a process was killed by a signal there may be some “leaked” resources. (Neither leaked semaphores nor shared memory segments will be automatically unlinked until the next reboot. This is problematic for both objects because the system allows only a limited number of named semaphores, and shared memory segments occupy some space in the main memory.)
官方文档:multiprocessing — Process-based parallelism — Python 3.10.0 documentation
- 示例1
import multiprocessing
import time
"""
def task():
print(name)
name.append(123)
if __name__ == '__main__':
multiprocessing.set_start_method("fork") # fork、spawn、forkserver
name = []
p1 = multiprocessing.Process(target=task)
p1.start()
time.sleep(2)
print(name) # []
"""
"""
def task():
print(name) # [123]
if __name__ == '__main__':
multiprocessing.set_start_method("fork") # fork、spawn、forkserver
name = []
name.append(123)
p1 = multiprocessing.Process(target=task)
p1.start()
"""
"""
def task():
print(name) # []
if __name__ == '__main__':
multiprocessing.set_start_method("fork") # fork、spawn、forkserver
name = []
p1 = multiprocessing.Process(target=task)
p1.start()
name.append(123)
"""
- 示例2
import multiprocessing
def task():
print(name)
print(file_object)
if __name__ == '__main__':
multiprocessing.set_start_method("fork") # fork、spawn、forkserver
name = []
file_object = open('x1.txt', mode='a+', encoding='utf-8')
p1 = multiprocessing.Process(target=task)
p1.start()
案例:
import multiprocessing
def task():
print(name)
file_object.write("alexn")
file_object.flush()
if __name__ == '__main__':
multiprocessing.set_start_method("fork")
name = []
file_object = open('x1.txt', mode='a+', encoding='utf-8')
file_object.write("卢本伟n")
p1 = multiprocessing.Process(target=task)
p1.start()
'''
卢本伟
alex
卢本伟
'''
import multiprocessing
import threading
import time
def func():
print("来了")
with lock:
print(666)
time.sleep(1)
def task():
# 拷贝的锁也是被申请走的状态
# 被谁申请走了? 被子进程中的主线程申请走了
for i in range(10):
t = threading.Thread(target=func)
t.start()
time.sleep(2)
lock.release()
if __name__ == '__main__':
multiprocessing.set_start_method("fork")
name = []
lock = threading.RLock()
lock.acquire()
p1 = multiprocessing.Process(target=task)
p1.start()
1.2 常见功能
进程的常见方法:
-
p.start()
,当前进程准备就绪,等待被CPU调度(工作单元其实是进程中的线程)。 -
p.join()
,等待当前进程的任务执行完毕后再向下继续执行。import time from multiprocessing import Process def task(arg): time.sleep(2) print("执行中...") if __name__ == '__main__': multiprocessing.set_start_method("spawn") p = Process(target=task, args=('xxx',)) p.start() p.join() print("继续执行...")
-
p.daemon = 布尔值
,守护进程(必须放在start之前)-
p.daemon =True
,设置为守护进程,主进程执行完毕后,子进程也自动关闭。 -
p.daemon =False
,设置为非守护进程,主进程等待子进程,子进程执行完毕后,主进程才结束。
import time from multiprocessing import Process def task(arg): time.sleep(2) print("执行中...") if __name__ == '__main__': multiprocessing.set_start_method("spawn") p = Process(target=task, args=('xxx',)) p.daemon = True p.start() print("继续执行...")
-
-
进程的名称的设置和获取
import os
import time
import threading
import multiprocessing
def func():
time.sleep(3)
def task(arg):
for i in range(10):
t = threading.Thread(target=func)
t.start()
print(os.getpid(), os.getppid())
print("线程个数", len(threading.enumerate()))
time.sleep(2)
print("当前进程的名称:", multiprocessing.current_process().name)
if __name__ == '__main__':
print(os.getpid())
multiprocessing.set_start_method("spawn")
p = multiprocessing.Process(target=task, args=('xxx',))
p.name = "哈哈哈哈"
p.start()
print("继续执行...")
-
自定义进程类,直接将线程需要做的事写到run方法中。
import multiprocessing
class MyProcess(multiprocessing.Process):
def run(self):
print('执行此进程', self._args)
if __name__ == '__main__':
multiprocessing.set_start_method("spawn")
p = MyProcess(args=('xxx',))
p.start()
print("继续执行...")
-
CPU个数,程序一般创建多少个进程?(利用CPU多核优势)。
import multiprocessing multiprocessing.cpu_count()
import multiprocessing if __name__ == '__main__': count = multiprocessing.cpu_count() for i in range(count - 1): p = multiprocessing.Process(target=xxxx) p.start()
2.进程间数据的共享
进程是资源分配的最小单元,每个进程中都维护自己独立的数据,不共享。
import multiprocessing
def task(data):
data.append(666)
if __name__ == '__main__':
data_list = []
p = multiprocessing.Process(target=task, args=(data_list,))
p.start()
p.join()
print("主进程:", data_list) # []
注:线程这样操作可以[666]而进程不可以,线程data_list与data指向同一块地址,而进程则不。
如果想要让他们之间进行共享,则可以借助一些特殊的东西来实现。
2.1 共享
Shared memory
Data can be stored in a shared memory map using Value or Array. For example, the following code
'c': ctypes.c_char, 'u': ctypes.c_wchar,
'b': ctypes.c_byte, 'B': ctypes.c_ubyte,
'h': ctypes.c_short, 'H': ctypes.c_ushort,
'i': ctypes.c_int, 'I': ctypes.c_uint, (其u表示无符号)
'l': ctypes.c_long, 'L': ctypes.c_ulong,
'f': ctypes.c_float, 'd': ctypes.c_double
from multiprocessing import Process, Value, Array
def func(n, m1, m2):
n.value = 888
m1.value = 'a'.encode('utf-8')
m2.value = "武"
if __name__ == '__main__':
num = Value('i', 666)
v1 = Value('c')
v2 = Value('u')
p = Process(target=func, args=(num, v1, v2))
p.start()
p.join()
print(num.value) # 888
print(v1.value) # a
print(v2.value) # 武
from multiprocessing import Process, Value, Array
def f(data_array):
data_array[0] = 666
if __name__ == '__main__':
arr = Array('i', [11, 22, 33, 44]) # 数组:元素类型必须是int; 只能是这么几个数据。
p = Process(target=f, args=(arr,))
p.start()
p.join()
print(arr[:])
Server process
A manager object returned by Manager()
controls a server process which holds Python objects and allows other processes to manipulate them using proxies.
from multiprocessing import Process, Manager
def f(d, l):
d[1] = '1'
d['2'] = 2
d[0.25] = None
l.append(666)
if __name__ == '__main__':
with Manager() as manager:
d = manager.dict()
l = manager.list()
p = Process(target=f, args=(d, l))
p.start()
p.join()
print(d)
print(l)
2.2 交换
multiprocessing supports two types of communication channel between processes
Queues
The Queue class is a near clone of queue.Queue. For example
import multiprocessing
def task(q):
for i in range(10):
q.put(i)
if __name__ == '__main__':
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=task, args=(queue,))
p.start()
p.join()
print("主进程")
print(queue.get())
print(queue.get())
print(queue.get())
print(queue.get())
print(queue.get())
Pipes
The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex (two-way). For example:
import time
import multiprocessing
def task(conn):
time.sleep(1)
conn.send([111, 22, 33, 44])
data = conn.recv() # 阻塞
print("子进程接收:", data)
time.sleep(2)
if __name__ == '__main__':
parent_conn, child_conn = multiprocessing.Pipe()
p = multiprocessing.Process(target=task, args=(child_conn,))
p.start()
info = parent_conn.recv() # 阻塞
print("主进程接收:", info)
parent_conn.send(666)
上述都是Python内部提供的进程之间数据共享和交换的机制,作为了解即可,在项目开发中很少使用,后期项目中一般会借助第三方的来做资源的共享,例如:MySQL、redis等。
3. 进程锁
如果多个进程抢占式去做某些操作时候,为了防止操作出问题,可以通过进程锁来避免。
import time
from multiprocessing import Process, Value, Array
def func(n, ):
n.value = n.value + 1
if __name__ == '__main__':
num = Value('i', 0)
for i in range(20):
p = Process(target=func, args=(num,))
p.start()
time.sleep(3)
print(num.value)
import time
from multiprocessing import Process, Manager
def f(d, ):
d[1] += 1
if __name__ == '__main__':
with Manager() as manager:
d = manager.dict()
d[1] = 0
for i in range(20):
p = Process(target=f, args=(d,))
p.start()
time.sleep(3)
print(d)
import time
import multiprocessing
def task():
# 假设文件中保存的内容就是一个值:10
with open('f1.txt', mode='r', encoding='utf-8') as f:
current_num = int(f.read())
print("排队抢票了")
time.sleep(1)
current_num -= 1
with open('f1.txt', mode='w', encoding='utf-8') as f:
f.write(str(current_num))
if __name__ == '__main__':
for i in range(20):
p = multiprocessing.Process(target=task)
p.start()
很显然,多进程在操作时就会出问题,此时就需要锁来介入:
import time
import multiprocessing
def task(lock):
print("开始")
lock.acquire()
# 假设文件中保存的内容就是一个值:10
with open('f1.txt', mode='r', encoding='utf-8') as f:
current_num = int(f.read())
print("排队抢票了")
time.sleep(0.5)
current_num -= 1
with open('f1.txt', mode='w', encoding='utf-8') as f:
f.write(str(current_num))
lock.release()
if __name__ == '__main__':
multiprocessing.set_start_method("spawn")
lock = multiprocessing.RLock() # 进程锁
for i in range(10):
p = multiprocessing.Process(target=task, args=(lock,))
p.start()
# spawn模式,需要特殊处理。
time.sleep(7)
import time
import multiprocessing
import os
def task(lock):
print("开始")
lock.acquire()
# 假设文件中保存的内容就是一个值:10
with open('f1.txt', mode='r', encoding='utf-8') as f:
current_num = int(f.read())
print(os.getpid(), "排队抢票了")
time.sleep(0.5)
current_num -= 1
with open('f1.txt', mode='w', encoding='utf-8') as f:
f.write(str(current_num))
lock.release()
if __name__ == '__main__':
multiprocessing.set_start_method("spawn")
lock = multiprocessing.RLock()
process_list = []
for i in range(10):
p = multiprocessing.Process(target=task, args=(lock,))
p.start()
process_list.append(p)
# spawn模式,需要特殊处理。
for item in process_list:
item.join()
import time
import multiprocessing
def task(lock):
print("开始")
lock.acquire()
# 假设文件中保存的内容就是一个值:10
with open('f1.txt', mode='r', encoding='utf-8') as f:
current_num = int(f.read())
print("排队抢票了")
time.sleep(1)
current_num -= 1
with open('f1.txt', mode='w', encoding='utf-8') as f:
f.write(str(current_num))
lock.release()
if __name__ == '__main__':
multiprocessing.set_start_method('fork')
lock = multiprocessing.RLock()
for i in range(10):
p = multiprocessing.Process(target=task, args=(lock,))
p.start()
4. 进程池
import time
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
def task(num):
print("执行", num)
time.sleep(2)
if __name__ == '__main__':
# 修改模式
pool = ProcessPoolExecutor(4)
for i in range(10):
pool.submit(task, i)
print(1)
print(2)
import time
from concurrent.futures import ProcessPoolExecutor
def task(num):
print("执行", num)
time.sleep(2)
if __name__ == '__main__':
pool = ProcessPoolExecutor(4)
for i in range(10):
pool.submit(task, i)
# 等待进程池中的任务都执行完毕后,再继续往后执行。
pool.shutdown(True)
print(1)
import time
from concurrent.futures import ProcessPoolExecutor
import multiprocessing
def task(num):
print("执行", num)
time.sleep(2)
return num
def done(res):
print(multiprocessing.current_process())
time.sleep(1)
print(res.result())
time.sleep(1)
if __name__ == '__main__':
pool = ProcessPoolExecutor(4)
for i in range(50):
fur = pool.submit(task, i)
fur.add_done_callback(done) # done的调用由主进程处理(与线程池不同)
print(multiprocessing.current_process())
pool.shutdown(True)
注意:如果在进程池中要使用进程锁,则需要基于Manager中的Lock和RLock来实现。
import time
import multiprocessing
from concurrent.futures.process import ProcessPoolExecutor
def task(lock):
print("开始")
# lock.acquire()
# lock.relase()
with lock:
# 假设文件中保存的内容就是一个值:10
with open('f1.txt', mode='r', encoding='utf-8') as f:
current_num = int(f.read())
print("排队抢票了")
time.sleep(1)
current_num -= 1
with open('f1.txt', mode='w', encoding='utf-8') as f:
f.write(str(current_num))
if __name__ == '__main__':
pool = ProcessPoolExecutor()
# lock_object = multiprocessing.RLock() # 不能使用
manager = multiprocessing.Manager()
lock_object = manager.RLock() # Lock
for i in range(10):
pool.submit(task, lock_object)
案例:计算每天用户访问情况。
示例1
import os
import time
from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Manager
def task(file_name, count_dict):
ip_set = set()
total_count = 0
ip_count = 0
file_path = os.path.join("files", file_name)
file_object = open(file_path, mode='r', encoding='utf-8')
for line in file_object:
if not line.strip():
continue
user_ip = line.split(" - -", maxsplit=1)[0].split(",")[0]
total_count += 1
if user_ip in ip_set:
continue
ip_count += 1
ip_set.add(user_ip)
count_dict[file_name] = {"total": total_count, 'ip': ip_count}
time.sleep(1)
def run():
# 根据目录读取文件并初始化字典
"""
1.读取目录下所有的文件,每个进程处理一个文件。
"""
pool = ProcessPoolExecutor(4)
with Manager() as manager:
"""
count_dict={
"20210322.log":{"total":10000,'ip':800},
}
"""
count_dict = manager.dict()
for file_name in os.listdir("files"):
pool.submit(task, file_name, count_dict)
pool.shutdown(True)
for k, v in count_dict.items():
print(k, v)
if __name__ == '__main__':
run()
示例2
import os
import time
from concurrent.futures import ProcessPoolExecutor
def task(file_name):
ip_set = set()
total_count = 0
ip_count = 0
file_path = os.path.join("files", file_name)
file_object = open(file_path, mode='r', encoding='utf-8')
for line in file_object:
if not line.strip():
continue
user_ip = line.split(" - -", maxsplit=1)[0].split(",")[0]
total_count += 1
if user_ip in ip_set:
continue
ip_count += 1
ip_set.add(user_ip)
time.sleep(1)
return {"total": total_count, 'ip': ip_count}
def outer(info, file_name):
def done(res, *args, **kwargs):
info[file_name] = res.result()
return done
def run():
# 根据目录读取文件并初始化字典
"""
1.读取目录下所有的文件,每个进程处理一个文件。
"""
info = {}
pool = ProcessPoolExecutor(4)
for file_name in os.listdir("files"):
fur = pool.submit(task, file_name)
fur.add_done_callback( outer(info, file_name) ) # 回调函数:主进程
pool.shutdown(True)
for k, v in info.items():
print(k, v)
if __name__ == '__main__':
run()
5. 协程
暂时以了解为主。
计算机中提供了:线程、进程 用于实现并发编程(真实存在)。
协程(Coroutine),是程序员通过代码搞出来的一个东西(非真实存在)。
协程也可以被称为微线程,是一种用户态内的上下文切换技术。
简而言之,其实就是通过一个线程实现代码块相互切换执行(来回跳着执行)。
例如:
def func1():
print(1)
...
print(2)
def func2():
print(3)
...
print(4)
func1()
func2()
上述代码是普通的函数定义和执行,按流程分别执行两个函数中的代码,并先后会输出:1、2、3、4
。
但如果介入协程技术那么就可以实现函数见代码切换执行,最终输入:1、3、2、4
。
在Python中有多种方式可以实现协程,例如:
-
greenlet
pip install greenlet from greenlet import greenlet def func1(): print(1) # 第1步:输出 1 gr2.switch() # 第3步:切换到 func2 函数 print(2) # 第6步:输出 2 gr2.switch() # 第7步:切换到 func2 函数,从上一次执行的位置继续向后执行 def func2(): print(3) # 第4步:输出 3 gr1.switch() # 第5步:切换到 func1 函数,从上一次执行的位置继续向后执行 print(4) # 第8步:输出 4 gr1 = greenlet(func1) gr2 = greenlet(func2) gr1.switch() # 第1步:去执行 func1 函数
-
yield
def func1(): yield 1 yield from func2() yield 2 def func2(): yield 3 yield 4 f1 = func1() for item in f1: print(item)
虽然上述两种都实现了协程,但这种编写代码的方式没啥意义。
这种来回切换执行,可能反倒让程序的执行速度更慢了(相比较于串行)。
协程如何才能更有意义呢?
不要让用户手动去切换,而是遇到IO操作时能自动切换。
Python在3.4之后推出了asyncio模块 + Python3.5推出async、async语法 ,内部基于协程并且遇到IO请求自动化切换。
import asyncio
async def func1():
print(1)
await asyncio.sleep(2)
print(2)
async def func2():
print(3)
await asyncio.sleep(2)
print(4)
tasks = [
asyncio.ensure_future(func1()),
asyncio.ensure_future(func2())
]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
"""
需要先安装:pip3 install aiohttp
"""
import aiohttp
import asyncio
async def fetch(session, url):
print("发送请求:", url)
async with session.get(url, verify_ssl=False) as response:
content = await response.content.read()
file_name = url.rsplit('_')[-1]
with open(file_name, mode='wb') as file_object:
file_object.write(content)
async def main():
async with aiohttp.ClientSession() as session:
url_list = [
'https://www3.autoimg.cn/newsdfs/g26/M02/35/A9/120x90_0_autohomecar__ChsEe12AXQ6AOOH_AAFocMs8nzU621.jpg',
'https://www2.autoimg.cn/newsdfs/g30/M01/3C/E2/120x90_0_autohomecar__ChcCSV2BBICAUntfAADjJFd6800429.jpg',
'https://www3.autoimg.cn/newsdfs/g26/M0B/3C/65/120x90_0_autohomecar__ChcCP12BFCmAIO83AAGq7vK0sGY193.jpg'
]
tasks = [asyncio.create_task(fetch(session, url)) for url in url_list]
await asyncio.wait(tasks)
if __name__ == '__main__':
asyncio.run(main())
通过上述内容发现,在处理IO请求时,协程通过一个线程就可以实现并发的操作。
协程、线程、进程的区别?
线程,是计算机中可以被cpu调度的最小单元。
进程,是计算机资源分配的最小单元(进程为线程提供资源)。
一个进程中可以有多个线程,同一个进程中的线程可以共享此进程中的资源。由于CPython中GIL的存在:
- 线程,适用于IO密集型操作。
- 进程,适用于计算密集型操作。协程,协程也可以被称为微线程,是一种用户态内的上下文切换技术,在开发中结合遇到IO自动切换,就可以通过一个线程实现并发操作。
所以,在处理IO操作时,协程比线程更加节省开销(协程的开发难度大一些)。
现在很多Python中的框架都在支持协程,比如:FastAPI、Tornado、Sanic、Django 3、aiohttp等,企业开发使用的也越来越多(目前不是特别多)。
关于协程,目前同学们先了解这些概念即可,更深入的开发、应用 暂时不必过多了解,等大家学了Web框架和爬虫相关知识之后,再来学习和补充效果更佳。有兴趣想要研究的同学可以沛齐老师写的文章和专题视频:
文章
https://pythonav.com/wiki/detail/6/91/
https://zhuanlan.zhihu.com/p/137057192
视频
asyncio到底是个啥?【python async await】_哔哩哔哩_bilibili
总结
-
了解的进程的几种模式
-
掌握进程和进程池的常见操作
-
进程之间数据共享
-
进程锁
-
协程、进程、线程的区别(概念)
最后
以上就是执着往事为你收集整理的python并发编程提前总结什么是并发编程?1. 进程和线程线程进程的全部内容,希望文章能够帮你解决python并发编程提前总结什么是并发编程?1. 进程和线程线程进程所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复