疫情预测的数据集合误差分析
- 我们的作业
- 数据
- 中国1.28~3.10各个省份数据
- 湖北的
- 其他省份的
- 这是美丽国的数据
- 一些思路
我们的作业
任务说明:调研新冠疫情预测与分析系统。使用一个城市的新冠历史数据(自 行网上获取),应用一种合适的人工智能算法构建新冠疫情预测模型。根据构建 好的模型,能根据前10天的新冠数据,预测未来3天的新冠数据。设计一个新冠 疫情预测与分析系统,完成模型的训练,模型的测试(给出测试精度)和模型的
应用等功能。根据调研结果,可以自行设计更具有实用性和创新性的系统功能。 完成系统设计和开发后,请按附件1实验报告模板按要求完成报告内容并以附件 形式提交
数据
中国1.28~3.10各个省份数据
.csv文件打开
主要是发现中文在csv里面怪怪的,考虑省份在数据处理时候没啥卵用就缩写了
hb,3554,4586,5806,7153,9074,11177,13522,16678,19665,22112,24953,27100,29631,31728,33366,48206,51986,54406,56249,58182,59989,61682,62031,62662,63454,64084,64287,64786,65187,65596,65914,66337,66907,67103,67217,67331,67466,67592,67666,67707,67743,67760,67773,67781,67786,67790,67794,67798,67799,67800,67800
gd,277,354,436,535,632,725,813,895,970,1034,1095,1131,1159,1177,1219,1241,1261,1294,1316,1322,1328,1331,1332,1333,1339,1342,1345,1347,1347,1347,1348,1349,1349,1350,1350,1350,1351,1352,1352,1352,1352,1353,1356,1356,1356,1356,1358,1361,1364,1370,1370
hn,206,278,352,422,493,566,675,764,851,914,981,1033,1073,1105,1135,1169,1184,1212,1231,1246,1257,1262,1265,1267,1270,1271,1271,1271,1271,1272,1272,1272,1272,1272,1272,1272,1272,1272,1272,1272,1272,1272,1273,1273,1273,1273,1273,1273,1273,1273,1273
zj,296,428,537,599,661,724,829,895,954,1006,1048,1075,1092,1117,1131,1145,1155,1162,1167,1171,1172,1174,1175,1203,1205,1205,1205,1205,1205,1205,1205,1205,1205,1206,1213,1213,1215,1215,1215,1215,1215,1215,1215,1215,1215,1227,1231,1231,1232,1232,1232
hn,221,277,332,389,463,521,593,661,711,772,803,838,879,912,946,968,988,1001,1004,1006,1007,1008,1010,1011,1013,1016,1016,1016,1016,1017,1017,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018,1018
ah,152,200,237,297,340,408,480,530,591,665,733,779,830,860,889,910,934,950,962,973,982,986,987,988,989,989,989,989,989,989,990,990,990,990,990,990,990,990,990,990,990,990,990,990,990,990,990,990,990,990,990
jx,109,162,240,286,333,391,476,548,600,661,698,740,771,804,844,872,900,913,925,930,933,934,934,934,934,934,934,934,934,934,935,935,935,935,935,935,935,935,935,935,935,935,935,935,935,935,935,935,935,935,935
sd,130,158,184,206,230,259,275,307,347,386,416,444,466,487,497,509,523,532,537,541,543,544,546,749,750,754,755,756,756,756,756,756,758,758,758,758,758,758,758,758,758,758,760,760,760,760,760,760,761,761,761
js,99,129,168,202,236,271,308,341,373,408,439,468,492,515,543,570,593,604,617,626,629,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631,631
cq,147,182,211,247,275,312,344,376,400,415,428,450,473,489,509,525,532,538,547,552,553,553,560,567,572,573,575,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576,576
sc,108,142,177,207,231,254,282,301,321,344,363,386,405,417,436,451,463,470,481,495,508,514,520,525,526,526,527,529,531,534,538,538,538,538,538,538,539,539,539,539,539,539,539,539,539,539,539,539,540,540,540
hlj,38,43,59,80,95,121,155,190,227,277,295,307,331,360,378,395,418,425,445,457,464,470,476,479,479,480,480,480,480,480,480,480,480,480,480,480,481,481,481,481,481,481,482,482,482,482,482,482,482,482,482
bj,102,111,139,168,191,212,228,253,274,297,315,326,337,342,352,366,372,375,380,381,387,393,395,396,399,399,399,400,400,410,410,411,413,414,414,417,418,422,426,428,428,429,435,435,436,437,442,452,456,469,469
sh,96,112,135,169,182,203,219,243,257,277,286,293,299,303,311,315,318,326,328,332,333,333,334,334,335,335,335,336,336,337,337,337,337,337,338,338,339,342,342,342,342,344,344,344,346,352,353,355,358,361,361
hb,48,65,82,96,104,113,126,135,157,172,195,206,218,239,251,265,283,291,300,301,302,306,307,308,309,311,311,311,312,317,318,318,318,318,318,318,318,318,318,318,318,318,318,318,318,318,318,318,318,318,318
fj,82,101,120,144,159,179,194,205,215,224,239,250,261,267,272,279,281,285,287,290,292,293,293,293,293,293,293,294,294,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296,296
gx,58,78,87,100,111,127,139,150,168,171,183,195,210,215,222,222,226,235,237,238,242,244,245,246,249,249,251,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,252,253,253,253
sx,56,63,87,101,116,128,142,165,173,184,195,208,213,219,225,229,230,232,236,240,240,242,244,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,245,246,246,246
yn,55,70,83,91,105,114,119,124,133,136,138,141,149,153,154,156,162,168,171,171,172,173,173,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,174,175,176,176,176
hns,43,46,52,60,64,70,80,91,106,117,124,130,138,142,157,157,158,162,162,163,163,163,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168,168
gz,9,12,29,29,38,46,58,64,71,81,89,99,109,127,133,135,140,143,144,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,146,147,146,146
tj,27,31,32,38,48,58,67,69,78,81,88,90,94,104,110,117,120,121,124,125,127,128,131,132,135,135,135,135,135,135,136,136,136,136,136,136,136,136,136,136,136,136,136,136,136,136,136,136,136,136,136
sx,27,35,39,47,56,66,74,81,90,96,104,115,119,122,124,126,126,127,128,129,130,131,131,132,132,132,132,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133,133
ln,39,41,48,63,69,73,77,88,91,96,105,107,108,111,116,116,117,119,121,121,121,121,121,121,121,121,121,121,121,121,121,121,122,122,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125
jl,9,14,14,17,23,31,42,54,59,65,69,78,80,81,83,84,86,88,89,89,89,90,91,91,91,91,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93
gs,24,26,29,35,40,51,55,57,62,67,71,79,83,86,86,87,90,90,90,90,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,102,119,120,124,124,125,127,127,129,132,133,133,133,133
湖北的
其他省份的
这是美丽国的数据
确诊 治愈 死亡 日期
5 0 0 2020/1/27
6 0 0 2020/1/31
6 0 0 2020/2/1
8 0 0 2020/2/2
9 0 0 2020/2/3
11 0 0 2020/2/4
12 0 0 2020/2/6
12 0 0 2020/2/10
13 0 0 2020/2/11
13 3 0 2020/2/12
14 3 0 2020/2/13
15 3 0 2020/2/14
15 3 0 2020/2/15
15 3 0 2020/2/16
15 3 0 2020/2/17
15 3 0 2020/2/20
35 3 0 2020/2/22
35 3 0 2020/2/23
35 3 0 2020/2/24
53 3 0 2020/2/25
57 3 0 2020/2/26
60 3 0 2020/2/27
60 3 0 2020/2/28
63 3 0 2020/2/29
63 3 1 2020/3/1
77 3 1 2020/3/2
100 3 6 2020/3/3
122 3 9 2020/3/4
153 3 11 2020/3/5
232 3 14 2020/3/6
324 10 14 2020/3/7
445 10 19 2020/3/8
572 10 21 2020/3/9
704 10 26 2020/3/10
1004 10 31 2020/3/11
1004 10 31 2020/3/12
1635 10 39 2020/3/13
2084 10 41 2020/3/14
2885 10 60 2020/3/15
3700 10 66 2020/3/16
4661 48 90 2020/3/17
6420 74 108 2020/3/18
10259 106 153 2020/3/19
14250 121 208 2020/3/20
19624 147 260 2020/3/21
26997 176 340 2020/3/22
35360 178 473 2020/3/23
46450 178 593 2020/3/24
55243 354 802 2020/3/25
69194 619 1050 2020/3/26
85840 713 1296 2020/3/27
105470 2072 1710 2020/3/28
124686 2612 2191 2020/3/29
143101 4865 2517 2020/3/30
164603 5896 3170 2020/3/31
189633 7136 4081 2020/4/1
216722 8672 5137 2020/4/2
245658 9311 6068 2020/4/3
278537 9920 7163 2020/4/4
312245 15021 8503 2020/4/5
337971 17582 9654 2020/4/6
368449 19919 10993 2020/4/7
399979 22539 12912 2020/4/8
432579 24213 14830 2020/4/9
467184 26522 16736 2020/4/10
501615 29192 18781 2020/4/11
530830 32314 20646 2020/4/12
558526 42018 22146 2020/4/13
583220 44319 23654 2020/4/14
609696 49966 26059 2020/4/15
640014 52772 31002 2020/4/16
672246 56236 33318 2020/4/17
706832 59672 37084 2020/4/18
735366 66854 39095 2020/4/19
760570 71011 40702 2020/4/20
788920 73533 42458 2020/4/21
826184 75682 45150 2020/4/22
843937 76616 46838 2020/4/23
870468 80937 50031 2020/4/24
907096 99121 52063 2020/4/25
940797 105823 54001 2020/4/26
967585 107070 54931 2020/4/27
989357 111587 56386 2020/4/28
1014568 115936 58471 2020/4/29
1040608 124064 61123 2020/4/30
1070032 153947 63019 2020/5/1
1107815 164015 65244 2020/5/2
1133069 175382 66385 2020/5/3
1158341 180152 67686 2020/5/4
1181885 187180 69079 2020/5/5
1206323 189791 71152 2020/5/6
1231943 189910 73566 2020/5/7
1256972 195036 75670 2020/5/8
1286833 198993 77280 2020/5/9
1312099 212534 78862 2020/5/10
1332411 216169 79606 2020/5/11
1351200 232733 80897 2020/5/12
1371395 230287 82461 2020/5/13
1395265 243430 84313 2020/5/14
1419998 246414 85974 2020/5/15
1443397 250747 87568 2020/5/16
一些思路
对于这道题的一些思考
SIR 是基本的传染病预测模型 构建起来比较简单 考虑到 易感 感染 康复 三者即可(精度不足)- SEIR 即SIR 的升级模型 在上面的基础上 加了一层潜伏人群
- 基于LSTM的时间序列模型
- 神经网络算法
- 保底 RNN算法
另外借鉴了guyouyang大佬的一些思路,这是他的GitHub地址。
最后
以上就是傲娇铃铛最近收集整理的关于数据集和误差分析我们的作业数据一些思路的全部内容,更多相关数据集和误差分析我们内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复