我是靠谱客的博主 健康毛巾,最近开发中收集的这篇文章主要介绍SVM 超平面计算例题SVM SummaryExampleCalculate,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

SVM Summary

在这里插入图片描述

Example

Suppose the dataset contains two positive samples x ( 1 ) = [ 1 , 1 ] T x^{(1)}=[1,1]^T x(1)=[1,1]T and x ( 2 ) = [ 2 , 2 ] T x^{(2)}=[2,2]^T x(2)=[2,2]T, and two negative samples x ( 3 ) = [ 0 , 0 ] T x^{(3)}=[0,0]^T x(3)=[0,0]T and x ( 4 ) = [ − 1 , 0 ] T x^{(4)}=[-1,0]^T x(4)=[1,0]T. Please calculate the SVM decision hyperplane.

Calculate

min ⁡ λ   J ( λ ) = 1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y ( i ) y ( j ) ( x ( i ) ) T x ( j ) − ∑ i = 1 N λ i min_lambda {mathcal{J}(lambda)} = frac{1}{2}sum_{i=1}^Nsum_{j=1}^N lambda_ilambda_jy^{(i)}y^{(j)}(x^{(i)})^Tx^{(j)} - sum_{i=1}^Nlambda_i λmin J(λ)=21i=1Nj=1Nλiλjy(i)y(j)(x(i))Tx(j)i=1Nλi
s . t .          λ i ⩾ 0 ,        ∑ i = 1 N λ i y ( i ) = 0 s.t. lambda_i geqslant 0, sum_{i=1}^Nlambda_iy^{(i)}=0 s.t.        λi0,      i=1Nλiy(i)=0
D a t a s e t   D : { x : { [ 1 , 1 ] , [ 2 , 2 ] , [ 0 , 0 ] , [ − 1 , 0 ] } , y : { 1 , 1 , − 1 , − 1 } } Dataset D:{x:{[1,1],[2,2],[0,0],[-1,0]},y:{1,1,-1,-1}} Dataset D:{x:{[1,1],[2,2],[0,0],[1,0]},y:{1,1,1,1}}可得下式:
min ⁡ λ   J ( λ ) = 1 2 ( 2 λ 1 2 + 8 λ 2 2 + λ 4 2 + 8 λ 1 λ 2 + 2 λ 1 λ 4 + 4 λ 2 λ 4 ) − λ 1 − λ 2 − λ 3 − λ 4 s . t         λ 1 ⩾ 0 , λ 2 ⩾ 0 , λ 3 ⩾ 0 , λ 4 ⩾ 0 λ 1 + λ 2 − λ 3 − λ 4 = 0 min_lambda {mathcal{J}(lambda)} = frac{1}{2}(2lambda_1^2+8lambda_2^2+lambda_4^2+8lambda_1lambda_2+2lambda_1lambda_4+4lambda_2lambda_4) \- lambda_1-lambda_2-lambda_3-lambda_4\ s.t lambda_1 geqslant 0,lambda_2geqslant 0,lambda_3geqslant 0,lambda_4geqslant 0\ lambda_1+lambda_2-lambda_3-lambda_4 = 0 λmin J(λ)=21(2λ12+8λ22+λ42+8λ1λ2+2λ1λ4+4λ2λ4)λ1λ2λ3λ4s.t       λ10,λ20,λ30,λ40λ1+λ2λ3λ4=0
since λ 1 + λ 2 = λ 3 + λ 4 → λ 3 = λ 1 + λ 2 − λ 4 lambda_1+lambda_2 = lambda_3+lambda_4 to lambda_3 = lambda_1+lambda_2 - lambda_4 λ1+λ2=λ3+λ4λ3=λ1+λ2λ4:
min ⁡ λ   J ( λ ) = λ 1 2 + 4 λ 2 2 + 1 2 λ 4 2 + 4 λ 1 λ 2 + λ 1 λ 4 + 2 λ 2 λ 4 − 2 λ 1 − 2 λ 2 s . t         λ 1 ⩾ 0 , λ 2 ⩾ 0 ⟹ 求 偏 导 { ∂ J ∂ λ 1 = 2 λ 1 + 4 λ 2 + λ 4 − 2 = 0 ∂ J ∂ λ 2 = 4 λ 1 + 8 λ 2 + 2 λ 4 − 2 = 0 ∂ J ∂ λ 4 = λ 1 + 2 λ 2 + λ 4 = 0 min_lambda {mathcal{J}(lambda)} = lambda_1^2+4lambda_2^2+frac{1}{2}lambda_4^2+4lambda_1lambda_2+lambda_1lambda_4+2lambda_2lambda_4 - 2lambda_1-2lambda_2\ s.t lambda_1 geqslant 0,lambda_2geqslant 0 \ \ Longrightarrow ^{求偏导}\ left{begin{matrix} frac{partial mathcal{J}}{partial lambda_1} = 2lambda_1 +4lambda_2+lambda_4-2=0 \ frac{partial mathcal{J}}{partial lambda_2} = 4lambda_1 +8lambda_2+2lambda_4-2=0 \ frac{partial mathcal{J}}{partial lambda_4} = lambda_1 +2lambda_2+lambda_4=0 end{matrix}right. λmin J(λ)=λ12+4λ22+21λ42+4λ1λ2+λ1λ4+2λ2λ42λ12λ2s.t       λ10,λ20λ1J=2λ1+4λ2+λ42=0λ2J=4λ1+8λ2+2λ42=0λ4J=λ1+2λ2+λ4=0
Lagrange无解,所以极小值在边界上:

  • λ 1 = 0 , λ 3 = λ 1 + λ 2 − λ 4 lambda_1 = 0, lambda_3 = lambda_1+lambda_2 - lambda_4 λ1=0λ3=λ1+λ2λ4带入 J ( λ ) mathcal{J}(lambda) J(λ)中,得:
    J ( λ ) = 4 λ 2 2 + 1 2 λ 4 2 + + 2 λ 2 λ 4 − 2 λ 2 ⟹ 求 偏 导 { ∂ J ∂ λ 2 = 8 λ 2 + 2 λ 4 − 2 = 0 ∂ J ∂ λ 4 = 2 λ 2 + λ 4 = 0 ⟹ { λ 2 = 1 2 λ 4 = − 1 ( ≤ 0      不 满 足 s . t . ) 再 令 : λ 2 = 0 , 则 λ 4 = 0 , J ( λ ) = 0 ; 或 λ 4 = 0 , 则 λ 2 = 1 4 , J ( λ ) = − 1 4 ; mathcal{J}(lambda) = 4lambda_2^2+frac{1}{2}lambda_4^2++2lambda_2lambda_4 -2lambda_2 \ \ Longrightarrow ^{求偏导}\ left{begin{matrix} frac{partial mathcal{J}}{partial lambda_2} = 8lambda_2+2lambda_4-2=0 \ frac{partial mathcal{J}}{partial lambda_4} = 2lambda_2+lambda_4=0 end{matrix}right. Longrightarrow left{begin{matrix} lambda_2=frac{1}{2} \ lambda_4=-1(le0 不满足s.t.) end{matrix}right.\ 再令:\ lambda_2 = 0,则lambda_4=0, mathcal{J}(lambda) = 0;\ 或lambda_4 = 0,则lambda_2=frac{1}{4}, mathcal{J}(lambda) = -frac{1}{4}; J(λ)=4λ22+21λ42++2λ2λ42λ2{λ2J=8λ2+2λ42=0λ4J=2λ2+λ4=0{λ2=21λ4=1(0    s.t.)λ2=0,λ4=0J(λ)=0λ4=0,λ2=41J(λ)=41

同理可得:

  • λ 2 = 0 lambda_2 = 0 λ2=0
    λ 1 = 0 , 则 λ 4 = 0 , J ( λ ) = 0 ; 或 λ 4 = 0 , 则 λ 1 = 1 , J ( λ ) = − 1 ; lambda_1 = 0,则lambda_4=0, mathcal{J}(lambda) = 0;\ 或lambda_4 = 0,则lambda_1=1, mathcal{J}(lambda) =-1; λ1=0,λ4=0J(λ)=0λ4=0,λ1=1J(λ)=1
  • λ 3 = 0 lambda_3 = 0 λ3=0
    λ 1 = 0 , 则 λ 2 = 2 13 , J ( λ ) = − 2 13 ; 或 λ 2 = 0 , 则 λ 1 = 2 5 , J ( λ ) = − 2 5 ; lambda_1 = 0,则lambda_2=frac{2}{13}, mathcal{J}(lambda) = -frac{2}{13};\ 或lambda_2 = 0,则lambda_1=frac{2}{5}, mathcal{J}(lambda) =-frac{2}{5}; λ1=0,λ2=132J(λ)=132λ2=0,λ1=52J(λ)=52
  • λ 4 = 0 lambda_4 = 0 λ4=0
    λ 1 = 0 , 则 λ 2 = 1 4 , J ( λ ) = − 1 4 ; 或 λ 2 = 0 , 则 λ 1 = 1 , J ( λ ) = − 1 ; lambda_1 = 0,则lambda_2=frac{1}{4}, mathcal{J}(lambda) = -frac{1}{4};\ 或lambda_2 = 0,则lambda_1=1, mathcal{J}(lambda) =-1; λ1=0,λ2=41J(λ)=41λ2=0,λ1=1J(λ)=1
    综上: λ 1 , 2 , 3 , 4 = { 1 , 0 , 1 , 0 } lambda_{1,2,3,4} ={1,0,1,0} λ1,2,3,4={1,0,1,0}
    { W = ∑ i = 1 N λ i y ( i ) x ( i ) b = y ( j ) − ∑ i = 1 N λ i y ( i ) ( x ( i ) ) T x ( j ) ⟹ { W = [ 1 , 1 ] T b = − 1 ⟹ x ( 1 ) + x ( 2 ) − 1 = 0 left{begin{matrix} W=sum_{i=1}^{N} lambda_{i} y^{(i)} boldsymbol{x}^{(i)}\ b=y^{(j)}-sum_{i=1}^{N} lambda_{i} y^{(i)}left(x^{(i)}right)^{T} x^{(j)} end{matrix}right. Longrightarrow left{begin{matrix} W = [1,1]^T\ b=-1 end{matrix}right. \Longrightarrow x^{(1)}+x^{(2)} -1 =0 {W=i=1Nλiy(i)x(i)b=y(j)i=1Nλiy(i)(x(i))Tx(j){W=[1,1]Tb=1x(1)+x(2)1=0

最后

以上就是健康毛巾为你收集整理的SVM 超平面计算例题SVM SummaryExampleCalculate的全部内容,希望文章能够帮你解决SVM 超平面计算例题SVM SummaryExampleCalculate所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(84)

评论列表共有 0 条评论

立即
投稿
返回
顶部