我是靠谱客的博主 长情小鸭子,这篇文章主要介绍多项式核函数相关推导,现在分享给大家,希望可以做个参考。

定义 x = ( x 1 , x 2 , … , x n ) T ∈ R n x=(x_1,x_2,dots,x_n)^T in R^n x=(x1,x2,,xn)TRn,则称乘积 x j 1 x j 2 … x j d x_{j_1}x_{j_2}dots x_{j_d} xj1xj2xjd x x x的一个 d d d阶多项式,其中 j 1 , j 2 , … , j d ∈ { 1 , 2 , … , n } j_1,j_2,dots,j_d in {1,2,dots,n} j1,j2,,jd{1,2,,n}

有序齐次多项式

  考虑二维空间( x ∈ R 2 x in R^2 xR2)的模式, x = ( x 1 , x 2 ) T x = (x_1,x_2)^T x=(x1,x2)T,其所有的二阶单项式为 x i 2 , x 2 2 , x 1 x 2 , x 2 x 1 x_i^2,x_2^2,x_1x_2,x_2x_1 xi2,x22,x1x2,x2x1 为有序单项式。

C 2 ( x ) = ( x 1 2 , x 2 2 , x 1 x 2 , x 2 x 1 ) T C_2(x)=(x_1^2,x_2^2,x_1x_2,x_2x_1)^T C2(x)=(x12,x22,x1x2,x2x1)T
C d ( x ) = ( x j 1 x j 2 … x j d ∣ j 1 , j 2 , … , j d ∈ { 1 , 2 , … , n } ) T C_d(x)=(x_{j_1}x_{j_2}dots x_{j_d}|_{j_1,j_2,dots,j_d in {1,2,dots,n}})^T Cd(x)=(xj1xj2xjdj1,j2,,jd{1,2,,n})T

1、二次项推导

令 x = ( x 1 , x 2 ) T , y = ( y 1 , y 2 ) T 令 x=(x_1,x_2)^T,y=(y_1,y_2)^T x=(x1,x2)T,y=(y1,y2)T
C 2 ( x ) ⋅ C 2 ( y ) = ( x 1 2 , x 2 2 , x 1 x 2 , x 2 x 1 ) T ⋅ ( y 1 2 , y 2 2 , y 1 y 2 , y 2 y 1 ) T = x 1 2 y 1 2 + x 2 2 y 2 2 + x 1 x 2 y 1 y 2 + x 2 x 1 y 2 y 1 = ( x ⋅ y ) 2 begin{aligned} C_2(x)·C_2(y) &=(x_1^2,x_2^2,x_1x_2,x_2x_1)^T · (y_1^2,y_2^2,y_1y_2,y_2y_1)^T\ &=x_1^2y_1^2+x_2^2y_2^2+x_1x_2y_1y_2+x_2x_1y_2y_1\ &=(x·y)^2 end{aligned} C2(x)C2(y)=(x12,x22,x1x2,x2x1)T(y12,y22,y1y2,y2y1)T=x12y12+x22y22+x1x2y1y2+x2x1y2y1=(xy)2

2、多次幂推导

令 x = ( x j 1 , x j 2 , … , x j d ∣ j 1 , j 2 , … , j d ∈ { 1 , 2 , … , n } ) T 令 x=(x_{j_1},x_{j_2},dots,x_{j_d}|_{j_1,j_2,dots,j_d in {1,2,dots,n}})^T x=(xj1,xj2,,xjdj1,j2,,jd{1,2,,n})T
y = ( y j 1 , y j 2 , … , y j d ∣ j 1 , j 2 , … , j d ∈ { 1 , 2 , … , n } ) T y=(y_{j_1},y_{j_2},dots,y_{j_d}|_{j_1,j_2,dots,j_d in {1,2,dots,n}})^T y=(yj1,yj2,,yjdj1,j2,,jd{1,2,,n})T
C d ( x ) ⋅ C d ( y ) = ( x j 1 , x j 2 , … , x j d ∣ j 1 , j 2 , … , j d ∈ { 1 , 2 , … , n } ) T ⋅ ( y j 1 , y j 2 , … , y j d ∣ j 1 , j 2 , … , j d ∈ { 1 , 2 , … , n } ) T = ∑ j 1 = 1 n ⋯ ∑ j d = 1 n x j 1 … x j d ⋅ y j 1 … y j d = ∑ j 1 = 1 n x j 1 y j 1 ⋯ ∑ j d = 1 n x j d y j d = ( ∑ j = 1 n x i y i ) d = ( x ⋅ y ) d begin{aligned} C_d(x)·C_d(y) &=(x_{j_1},x_{j_2},dots,x_{j_d}|_{j_1,j_2,dots,j_d in {1,2,dots,n}})^T · (y_{j_1},y_{j_2},dots,y_{j_d}|_{j_1,j_2,dots,j_d in {1,2,dots,n}})^T\ &=sum_{j_1=1}^ndotssum_{j_d=1}^n x_{j_1}dots x_{j_d} · y_{j_1}dots y_{j_d}\ &=sum_{j_1=1}^n x_{j_1}y_{j_1} dots sum_{j_d=1}^n x_{j_d}y_{j_d}\ &=(sum_{j=1}^nx_iy_i)^d=(x·y)^d end{aligned} Cd(x)Cd(y)=(xj1,xj2,,xjdj1,j2,,jd{1,2,,n})T(yj1,yj2,,yjdj1,j2,,jd{1,2,,n})T=j1=1njd=1nxj1xjdyj1yjd=j1=1nxj1yj1jd=1nxjdyjd=(j=1nxiyi)d=(xy)d

最后

以上就是长情小鸭子最近收集整理的关于多项式核函数相关推导的全部内容,更多相关多项式核函数相关推导内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(191)

评论列表共有 0 条评论

立即
投稿
返回
顶部