概述
等价无穷小代换
sinx~x, arcsinx~x, tanx~x, arctanx~x, 1-cosx~
1
2
x
2
dfrac12x^2
21x2
1
−
c
o
s
a
x
=
a
x
2
2
1-cos^ax=dfrac{ax^2}{2}
1−cosax=2ax2
e
x
−
1
e^x-1
ex−1~x,
a
x
−
1
a^x-1
ax−1~xlna
ln(1+x)~x
( 1 + x ) a − 1 (1+x)^a-1 (1+x)a−1~ax (a≠0)
x-sinx~ 1 6 x 3 dfrac16x^3 61x3, arcsinx-x~ 1 6 x 3 dfrac16x^3 61x3, tanx-x~ 1 3 x 3 dfrac13x^3 31x3, x-arctanx~ 1 3 x 3 dfrac13x^3 31x3
x-ln(1+x)~ 1 2 x 2 dfrac12x^2 21x2
n 1 + x ^nsqrt{1+x} n1+x-1~ 1 n x dfrac1nx n1x
1 + x − 1 − x sqrt{1+x}-sqrt{1-x} 1+x−1−x~x
无穷大的比较
当n→∞时:
l
n
a
n
<
<
n
B
<
<
a
n
<
<
n
!
<
<
n
n
ln^an<<n^B<<a^n<<n!<<n^n
lnan<<nB<<an<<n!<<nn
其中a,B>0, a>1
三角函数公式
sin2x=2sinxcosx, s i n 2 x = 1 2 ( 1 − c o s 2 x ) sin^2x = dfrac12(1-cos2x) sin2x=21(1−cos2x), c o s 2 x = 1 2 ( 1 + c o s 2 x ) cos^2x = dfrac12(1+cos2x) cos2x=21(1+cos2x)
c o s 2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
s e c x = 1 c o s x secx = dfrac{1}{cosx} secx=cosx1, c s c x = 1 s i n x cscx = dfrac{1}{sinx} cscx=sinx1
s i n x c o s x = t a n x dfrac{sinx}{cosx} = tanx cosxsinx=tanx, c o s x s i n x = c o t x dfrac{cosx}{sinx} = cotx sinxcosx=cotx, t a n x = s i n x 1 − s i n 2 x = 1 − c o s 2 x c o s x tanx = dfrac{sinx}{sqrt{1-sin^2x}} = dfrac{sqrt{1-cos^2x}}{cosx} tanx=1−sin2xsinx=cosx1−cos2x
s i n 2 x + c o s 2 x = 1 , 1 + t a n 2 x = s e c 2 x , 1 + c o t 2 x = c s c 2 x sin^2x+cos^2x = 1,quad1+tan^2x = sec^2x,quad1+cot^2x = csc^2x sin2x+cos2x=1,1+tan2x=sec2x,1+cot2x=csc2x
s i n 2 x = 1 − c o s 2 x 2 sin^2x=dfrac{1-cos2x}{2} sin2x=21−cos2x
c
o
s
2
x
=
1
+
c
o
s
2
x
2
cos^2x=dfrac{1+cos2x}{2}
cos2x=21+cos2x
cos(-x)=cosx
sin(-x)=-sin(-x)
求导公式
( C ) ′ = 0 , ( x a ) = a x a − 1 , ( a x ) ′ = a x l n a (C)' = 0,quad(x^a) = ax^{a-1},quad(a^x)' = a^xlna (C)′=0,(xa)=axa−1,(ax)′=axlna
( l o g a x ) ′ = 1 x l n a , ( t a n x ) ′ = s e c 2 x , ( c o t x ) ′ = − c s c 2 x (log_ax)' = dfrac{1}{xlna},quad(tanx)' = sec^2x,quad(cotx)' = -csc^2x (logax)′=xlna1,(tanx)′=sec2x,(cotx)′=−csc2x
( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x (secx)' = secxtanx,quad(cscx)' = -cscxcotx (secx)′=secxtanx,(cscx)′=−cscxcotx
(
a
r
c
s
i
n
x
)
′
=
1
1
−
x
2
(arcsinx)' = dfrac{1}{sqrt{1-x^2}}
(arcsinx)′=1−x21
(
a
r
c
c
o
s
x
)
′
=
−
1
1
−
x
2
(arccosx)' = -dfrac{1}{sqrt{1-x^2}}
(arccosx)′=−1−x21
(
a
r
c
t
a
n
x
)
′
=
1
1
+
x
2
(arctanx)' = dfrac{1}{1+x^2}
(arctanx)′=1+x21
(
a
r
c
c
o
t
x
)
′
=
−
1
1
+
x
2
(arccotx)' = -dfrac{1}{1+x^2}
(arccotx)′=−1+x21
( e − ( x − t ) 2 ) ′ = − 2 ( x − t ) ( x ′ − 1 ) e − ( x − t ) 2 (e^{-(x-t)^2})'=-2(x-t)(x'-1)e^{-(x-t)^2} (e−(x−t)2)′=−2(x−t)(x′−1)e−(x−t)2
n阶导公式
( e a x + b ) n = a n e a x + b (e^{displaystyle{ax+b}})^n=a^ne^{displaystyle{ax+b}} (eax+b)n=aneax+b
( s i n ( a x + b ) ) n = a n s i n ( a x + b + π 2 n ) (sin(ax+b))^n=a^nsin(ax+b+dfrac{pi}{2}n) (sin(ax+b))n=ansin(ax+b+2πn)
( c o s ( a x + b ) ) n = a n c o s ( a x + b + π 2 n ) (cos(ax+b))^n=a^ncos(ax+b+dfrac{pi}{2}n) (cos(ax+b))n=ancos(ax+b+2πn)
( l n ( a x + b ) ) n = ( − 1 ) n − 1 a n ( n − 1 ) ! ( a x + b ) n (ln(ax+b))^n=(-1)^{n-1}a^n dfrac{(n-1)!}{(ax+b)^n} (ln(ax+b))n=(−1)n−1an(ax+b)n(n−1)!
( 1 a x + b ) n = ( − 1 ) n a n n ! ( a x + b ) n + 1 (dfrac{1}{ax+b})^n=(-1)^na^n dfrac{n!}{(ax+b)^{n+1}} (ax+b1)n=(−1)nan(ax+b)n+1n!
微分方程
一阶线性非齐次微分方程解的公式
y = e − ∫ p ( x ) d x [ ∫ Q ( x ) e ∫ p ( x ) d x d x + C ] y=e^{displaystyle{-int{p(x)}dx}}[int{Q(x)e^{displaystyle{int{p(x)dx}}}dx+C}] y=e−∫p(x)dx[∫Q(x)e∫p(x)dxdx+C]
二阶常系数齐次微分方程解的特征
对y’‘+py’+qy=0
特征方程:
r
2
+
p
r
+
q
=
0
r^2+pr+q=0
r2+pr+q=0
设r1,r2是特征方程的两个根
不等实根
r
1
≠
r
2
r_1≠r_2
r1=r2
y
=
C
1
e
r
1
x
+
C
2
e
r
2
x
y=C_1e^{r_1x}+C_2e^{r_2x}
y=C1er1x+C2er2x
相等实根
r
1
=
r
2
=
r
r_1=r_2=r
r1=r2=r
y
=
e
r
x
(
C
1
+
C
2
x
)
y=e^{rx}(C_1+C_2x)
y=erx(C1+C2x)
共轭复根 y = e a x ( C 1 c o s B x + C 2 s i n B x ) y=e^{ax}(C_1cosBx+C_2sinBx) y=eax(C1cosBx+C2sinBx)
出现共轭复根的条件是Δ<0即 b 2 − 4 a c < 0 b^2-4ac<0 b2−4ac<0, 此时解为
− b ± b 2 − 4 a c 2 a = − b ± ( − 1 ) ( 4 a c − b 2 ) 2 a dfrac{-b± sqrt{b^2-4ac}}{2a}=dfrac{-b± sqrt{(-1)(4ac-b^2)}}{2a} 2a−b±b2−4ac=2a−b±(−1)(4ac−b2), 因为 − 1 = i sqrt{-1}=i −1=i , 所以原式可化为
− b ± 4 a c − b 2 i 2 a dfrac{-b± sqrt{4ac-b^2}i}{2a} 2a−b±4ac−b2i
令 a = − b 2 a a=-dfrac{b}{2a} a=−2ab, b = 4 a c − b 2 2 a b=dfrac{sqrt{4ac-b^2}}{2a} b=2a4ac−b2
可得共轭复根 r 1 , 2 = a ± b i r_{1,2}=a±bi r1,2=a±bi
积分公式
三角函数有理数万能公式
t =
t
a
n
x
2
tandfrac{x}2
tan2x, sinx =
2
t
1
+
t
2
dfrac{2t}{1+t^2}
1+t22t, cosx =
1
−
t
2
1
+
t
2
dfrac{1-t^2}{1+t^2}
1+t21−t2, dx =
2
1
+
t
2
d
t
dfrac{2}{1+t^2}dt
1+t22dt
点火公式
∫
0
π
2
s
i
n
3
∣
4
x
d
x
=
∫
0
π
2
c
o
s
3
∣
4
x
=
{
2
3
.
1
3
4
.
1
2
.
π
2
int_{0}^{dfrac{pi}{2}}{sin^{3|4}xdx}=int_{0}^{dfrac{pi}{2}}{cos^{3|4}x}=begin{cases}dfrac{2}{3}.1\ \ dfrac{3}{4}.dfrac{1}{2}.dfrac{pi}{2}end{cases}
∫02πsin3∣4xdx=∫02πcos3∣4x=⎩⎪⎪⎪⎨⎪⎪⎪⎧32.143.21.2π
积分公式
∫
1
x
d
x
=
l
n
∣
x
∣
+
C
intdfrac{1}{x}dx = ln|x|+C
∫x1dx=ln∣x∣+C
∫ a x d x = a x l n a + C ( a > 0 , a ≠ 1 ) int{a^x}dx = dfrac{a^x}{lna}+C(a>0,anot=1) ∫axdx=lnaax+C(a>0,a=1)
∫ e x d x = e x + C int{e^xdx} = e^x+C ∫exdx=ex+C
∫ s i n x d x = − c o s x + C int{sinxdx} = -cosx + C ∫sinxdx=−cosx+C
∫ c o s x d x = s i n x + C int{cosxdx} = sinx+C ∫cosxdx=sinx+C
∫ t a n x d x = − l n ∣ c o s x ∣ + C int{tanxdx} = -ln|cosx|+C ∫tanxdx=−ln∣cosx∣+C
∫ c o t x d x = l n ∣ s i n x ∣ + C int{cotxdx} = ln|sinx|+C ∫cotxdx=ln∣sinx∣+C
∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C int{secxdx} = ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C int{cscxdx} = ln|cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
∫ s e c 2 x d x = t a n x + C int{sec^2xdx} = tanx+C ∫sec2xdx=tanx+C
∫ c s c 2 x d x = − c o t x + C int{csc^2xdx} = -cotx+C ∫csc2xdx=−cotx+C
∫ 0 d x = C , ∫ 1 d x = ∫ d x = x + C int0dx = C,quadint1dx = int dx = x+C ∫0dx=C,∫1dx=∫dx=x+C
∫ x a d x = 1 a + 1 x a + 1 + C ( a ≠ − 1 ) int{x^a}dx = dfrac{1}{a+1}x^{a+1}+C(anot=-1) ∫xadx=a+11xa+1+C(a=−1)
∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C int{dfrac{1}{a^2+x^2}dx = dfrac{1}{a}arctandfrac{x}{a}+C} ∫a2+x21dx=a1arctanax+C
∫ 1 a 2 − x 2 d x = 1 2 a l n ∣ a + x a − x ∣ + C {intdfrac{1}{a^2-x^2}dx} = dfrac{1}{2a}ln|dfrac{a+x}{a-x}|+C ∫a2−x21dx=2a1ln∣a−xa+x∣+C
∫ 1 a 2 − x 2 d x = a r c s i n x a + C int{dfrac{1}{sqrt{a^2-x^2}}dx} = arcsindfrac{x}{a} +C ∫a2−x21dx=arcsinax+C
∫ 1 x 2 ± a 2 d x = l n ∣ x + x 2 ± a 2 ∣ + C int{dfrac{1}{sqrt{x^2pm a^2}}dx} = ln|x+sqrt{x^2pm a^2}|+C ∫x2±a21dx=ln∣x+x2±a2∣+C
∫ t a n 2 x d x = t a n x − x + C int{tan^2xdx} = tanx-x+C ∫tan2xdx=tanx−x+C
∫ a 2 − x 2 d x = 1 2 x a 2 − x 2 + a 2 2 a r c s i n x a + C int{sqrt{a^2-x^2}dx}=dfrac{1}{2}x sqrt{a^2-x^2}+dfrac{a^2}{2}arcsin dfrac{x}{a}+C ∫a2−x2dx=21xa2−x2+2a2arcsinax+C
∫ a 2 + x 2 = x 2 a 2 + x 2 + a 2 2 l n ∣ x + a 2 + x 2 ∣ + C int{sqrt{a^2+x^2}}=dfrac{x}{2} sqrt{a^2+x^2}+dfrac{a^2}{2}ln|x+sqrt{a^2+x^2}|+C ∫a2+x2=2xa2+x2+2a2ln∣x+a2+x2∣+C
∫ l n ( 1 + x ) d x = ( 1 + x ) l n ( 1 + x ) − x + C int{ln(1+x)dx}=(1+x)ln(1+x)-x+C ∫ln(1+x)dx=(1+x)ln(1+x)−x+C
∫ c o s x s i n 2 x d x = − 1 s i n x + C intdfrac{cosx}{sin^2x}dx=-dfrac{1}{sinx}+C ∫sin2xcosxdx=−sinx1+C
∫ 1 s i n x = l n ∣ c s c x − c o t x ∣ + C intdfrac{1}{sinx}=ln{|cscx-cotx|}+C ∫sinx1=ln∣cscx−cotx∣+C
∫
1
c
o
s
x
=
l
n
∣
s
e
c
x
+
t
a
n
x
∣
+
C
intdfrac{1}{cosx}=ln{|secx+tanx|}+C
∫cosx1=ln∣secx+tanx∣+C
∫
1
t
a
n
x
=
l
n
∣
s
i
n
x
∣
+
C
int{dfrac{1}{tanx}}=ln|sinx|+C
∫tanx1=ln∣sinx∣+C
∫ e x c o s x d x = e x ( s i n x + c o s x ) 2 + C int{e^xcosx}dx=dfrac{e^x(sinx+cosx)}{2}+C ∫excosxdx=2ex(sinx+cosx)+C
积分计算圆的公式
∫
0
a
a
2
−
x
2
d
x
=
π
4
a
2
int_{0}^{a}{ sqrt{a^2-x^2}dx}=dfrac{pi}{4}a^2
∫0aa2−x2dx=4πa2
∫ 0 a 2 a x − x 2 d x = π 4 a 2 int_{0}^{a}{ sqrt{2ax-x^2}dx}=dfrac{pi}{4}a^2 ∫0a2ax−x2dx=4πa2
∫ 1 1 + x 2 d x = l n ( x + 1 + x 2 ) + C int{dfrac{1}{sqrt{1+x^2}}dx}=ln(x+sqrt{1+x^2})+C ∫1+x21dx=ln(x+1+x2)+C
与三角函数周期性有关的积分公式
∫
0
π
2
f
(
s
i
n
x
)
d
x
=
∫
0
π
2
f
(
c
o
s
x
)
d
x
displaystyleint_{0}^{dfrac{pi}{2}}{f(sinx)dx}=int_{0}^{ dfrac{pi}{2}}{f(cosx)dx}
∫02πf(sinx)dx=∫02πf(cosx)dx
∫
0
π
f
(
s
i
n
x
)
d
x
=
2
∫
0
π
2
f
(
s
i
n
x
)
d
x
displaystyleint_{0}^{pi}{f(sinx)dx}=2 int_{0}^{ dfrac{pi}{2}}{f(sinx)dx}
∫0πf(sinx)dx=2∫02πf(sinx)dx
∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π 2 f ( s i n x ) d x displaystyleint_{0}^{pi}{xf(sinx)dx}=dfrac{pi}{2} int_{0}^{ dfrac{pi}{2}}{f(sinx)dx} ∫0πxf(sinx)dx=2π∫02πf(sinx)dx
两点确定一条直线 : ( x − x 1 ) / ( x 2 − x 1 ) = ( y − y 1 ) / ( y 2 − y 1 ) (x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1) (x−x1)/(x2−x1)=(y−y1)/(y2−y1)
常见曲线方程及图像
星形线: x 2 3 + y 2 3 = r 2 3 x^{dfrac{2}{3}}+y^{dfrac{2}{3}}=r^{dfrac{2}{3}} x32+y32=r32
心形线:
r=a(1-cosθ)
r=a(1+cosθ) (a>0)
玫瑰线:
r=asin3θ(a>0)
阿基米德螺旋线:
r=aθ
伯努利双扭线:
极坐标形式:
r
2
=
a
2
c
o
s
2
θ
r^2=a^2cos2θ
r2=a2cos2θ
r
2
=
a
2
s
i
n
2
θ
r^2=a^2sin2θ
r2=a2sin2θ
直角坐标形式:
(
x
2
+
y
2
)
2
=
2
a
2
(
x
2
−
y
2
)
(x^2+y^2)^2=2a^2(x^2-y^2)
(x2+y2)2=2a2(x2−y2)
摆线(旋轮线)
x=r(t-sint)
y=r(1-cost)
当t=
π
pi
π时, x代表摆线图像在x轴得中间点, y代表类圆形的最大值
t代表角度, t=
π
pi
π代表旋转了180
椭圆方程
x
2
a
2
+
y
2
b
2
=
1
dfrac{x^2}{a^2}+dfrac{y^2}{b^2}=1
a2x2+b2y2=1
长轴: 2a; 长半轴: a
短轴: 2b; 短半轴: b
焦点:
F
1
(
−
c
,
0
)
,
F
2
(
c
,
0
)
F_1(-c,0),F_2(c,0)
F1(−c,0),F2(c,0)
焦距:
∣
F
1
F
2
∣
|F_1F_2|
∣F1F2∣
椭圆上任意动点与焦点距离之和为2a,即
∣
P
F
1
+
P
F
2
∣
=
2
a
|PF_1+PF_2|=2a
∣PF1+PF2∣=2a
椭圆面积为
π
a
b
pi ab
πab
形心公式
1 . 一重积分的形心公式
x
‾
=
∫
a
b
x
f
(
x
)
d
x
∫
a
b
f
(
x
)
d
x
overline{x}=dfrac{int_{a}^{b}{xf(x)dx}}{ int_{a}^{b}{f(x)}dx}
x=∫abf(x)dx∫abxf(x)dx
y ‾ = ∫ a b y f ( y ) d y ∫ a b f ( y ) d y overline{y}=dfrac{int_{a}^{b}{yf(y)}dy}{ int_{a}^{b}{f(y)dy}} y=∫abf(y)dy∫abyf(y)dy
2 . 二重积分的形心公式
x
‾
=
∬
D
x
d
σ
S
overline{x}=dfrac{iint limits_{D} {xdσ}}{S}
x=SD∬xdσ
y
‾
=
∬
D
y
d
σ
S
overline{y}=dfrac{iint limits_{D} {ydσ}}{S}
y=SD∬ydσ
3 . 三重积分的形心公式
x
‾
=
1
V
∭
Ω
x
d
V
overline{x}=dfrac{1}{V}iiint limits_{Ω} xdV
x=V1Ω∭xdV
y
‾
=
1
V
∭
Ω
y
d
V
overline{y}=dfrac{1}{V}iiint limits_{Ω}ydV
y=V1Ω∭ydV
z
‾
=
1
V
∭
Ω
z
d
V
overline{z}=dfrac{1}{V}iiint limits_{Ω}zdV
z=V1Ω∭zdV
引力计算公式
F
=
G
m
1
m
2
r
2
F=G dfrac{m_1m_2}{r^2}
F=Gr2m1m2
G称为引力系数
无穷级数
泰勒展开拉格朗日余项公式
l
n
(
1
+
x
)
=
(
−
1
)
n
−
1
x
n
n
ln(1+x)=dfrac{(-1)^{n-1}x^n}{n}
ln(1+x)=n(−1)n−1xn
− l n ( 1 − x ) = ∑ 1 ∞ x n n -ln(1-x)=sumlimits_1^∞ dfrac{x^n}{n} −ln(1−x)=1∑∞nxn
s i n x = ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx=dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!} sinx=(2n+1)!(−1)nx2n+1
c o s x = ( − 1 ) n x 2 n ( 2 n ) ! cosx=dfrac{(-1)^nx^{2n}}{(2n)!} cosx=(2n)!(−1)nx2n
1 1 + x = ( − 1 ) n x n dfrac{1}{1+x}=(-1)^nx^n 1+x1=(−1)nxn
傅里叶级数
f
(
t
)
=
a
0
2
+
∑
n
=
1
∞
[
a
n
c
o
s
(
n
π
t
l
)
+
b
n
s
i
n
(
n
π
t
l
)
]
f(t)=dfrac{a_0}{2}+sumlimits_{n=1}^{infin}{[a_ncos(dfrac{npi t}{l})+b_nsin(dfrac{npi t}{l})]}
f(t)=2a0+n=1∑∞[ancos(lnπt)+bnsin(lnπt)]
a n = 1 l ∫ − l l f ( t ) c o s ( n π t l ) d t , n = 0 , 1 , 2 , 3... a_n=dfrac{1}{l}int_{-l}^{l}{f(t)cos(dfrac{npi t}{l})dt}, n=0,1,2,3... an=l1∫−llf(t)cos(lnπt)dt,n=0,1,2,3...
b n = 1 l ∫ − l l f ( t ) s i n ( n u t l d t ) , n = 1 , 2 , 3... b_n=dfrac{1}{l} int_{-l}^{l}{f(t)sin(dfrac{nut}{l}dt)}, n=1,2,3... bn=l1∫−llf(t)sin(lnutdt),n=1,2,3...
斯特林公式 n!=
2
π
n
(
n
e
)
n
sqrt{2pi n}(dfrac{n}{e})^n
2πn(en)n,
伽马函数
∫ 0 + ∞ x n e − x d x = n ! int_{0}^{+infin}{x^{n}e^{-x}dx}=n! ∫0+∞xne−xdx=n!
求幂级数常用公式
∑ n = 0 ∞ x n = 1 1 − x sumlimits_{n=0}^{infin}x^n=dfrac{1}{1-x} n=0∑∞xn=1−x1(-1,1)
∑ n = 0 ∞ ( n + 1 ) x n = 1 ( 1 − x ) 2 sumlimits_{n=0}^{infin}{(n+1)x^n=dfrac{1}{(1-x)^2}} n=0∑∞(n+1)xn=(1−x)21(-1,1)
∑ n = 0 ∞ ( n + 2 ) ( n + 1 ) x n = 2 ( 1 − x ) 3 sumlimits_{n=0}^{infin}{(n+2)(n+1)x^n=dfrac{2}{(1-x)^3}} n=0∑∞(n+2)(n+1)xn=(1−x)32(-1,1)
∑ n = 0 ∞ x n + 1 n + 1 = − l n ( 1 − x ) sumlimits_{n=0}^{infin}{dfrac{x^{n+1}}{n+1}}=-ln(1-x) n=0∑∞n+1xn+1=−ln(1−x)[-1,1)
∑ n = 0 ∞ x 2 n + 1 2 n + 1 = 1 2 l n 1 + x 1 − x sumlimits_{n=0}^{infin}{ dfrac{x^{2n+1}}{2n+1}}=dfrac{1}{2}ln{dfrac{1+x}{1-x}} n=0∑∞2n+1x2n+1=21ln1−x1+x(-1,1)
∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = a r c t a n x sumlimits_{n=0}^{infin}{ dfrac{(-1)^{n}x^{2n+1}}{2n+1}}=arctanx n=0∑∞2n+1(−1)nx2n+1=arctanx[-1,1]
∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = s i n x sumlimits_{n=0}^{infin}{ dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!}}=sinx n=0∑∞(2n+1)!(−1)nx2n+1=sinx
∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = c o s x sumlimits_{n=0}^{infin}{ dfrac{(-1)^{n}x^{2n}}{(2n)!}}=cosx n=0∑∞(2n)!(−1)nx2n=cosx
∑ n = 0 ∞ x n n ! = e x sumlimits_{n=0}^{infin}{ dfrac{x^{n}}{n!}}=e^{x} n=0∑∞n!xn=ex
曲线曲面积分
格林公式
∫
(
+
C
)
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∬
(
σ
)
(
σ
Q
σ
x
−
σ
P
σ
y
)
d
x
d
y
intlimits_{(+C)}P(x,y)dx+Q(x,y)dy=iintlimits_{(σ)}(dfrac{σQ}{σx}-dfrac{σP}{σy})dxdy
(+C)∫P(x,y)dx+Q(x,y)dy=(σ)∬(σxσQ−σyσP)dxdy
斯托克斯公式
∫
L
P
d
x
+
Q
d
y
+
R
d
z
=
∬
∑
[
c
o
s
a
c
o
s
B
c
o
s
r
∂
∂
x
∂
∂
y
∂
∂
z
P
Q
R
]
d
s
int limits_{L} {Pdx+Qdy+Rdz}=iint limits_{sum} begin{bmatrix}cosa&cosB&cosr\dfrac{partial{}}{partial{x}}&dfrac{partial{}}{partial{y}}&dfrac{partial{}}{partial{z}}\P&Q&Rend{bmatrix}ds
L∫Pdx+Qdy+Rdz=∑∬⎣⎢⎡cosa∂x∂PcosB∂y∂Qcosr∂z∂R⎦⎥⎤ds
高斯公式
∬
∑
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
=
∭
Ω
(
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
)
d
V
iint limits_{sum{}} {Pdydz+Qdzdx+Rdxdy}=iiint limits_{Ω} {(dfrac{partial{P}}{ partial{x}}+dfrac{partial{Q}}{ partial{y}}+dfrac{partial{R}}{ partial{z}})dV}
∑∬Pdydz+Qdzdx+Rdxdy=Ω∭(∂x∂P+∂y∂Q+∂z∂R)dV
不等式公式
a 2 + b 2 ≥ 2 a b a^2+b^2≥2ab a2+b2≥2ab
x 1 + x < l n ( 1 + x ) < x , x ∈ ( 0 , + ∞ ) displaystylefrac{x}{1+x}<ln(1+x)<x, x∈(0,+∞) 1+xx<ln(1+x)<x,x∈(0,+∞)
s i n x < x < t a n x sinx<x<tanx sinx<x<tanx
a 1 a 2 . . . a n n ≤ a 1 + a 2 + . . . + a n n displaystylesqrt[displaystyle{n}]{a_1a_2...a_n}≤displaystylefrac{a_1+a_2+...+a_n}{n} na1a2...an≤na1+a2+...+an
e x ≥ 1 + x displaystyle {e^{displaystyle{x}}}≥1+x ex≥1+x
l n x ≤ x − 1 lnx≤x-1 lnx≤x−1
矩阵公式
伴随矩阵
A
A
∗
=
A
∗
A
=
∣
A
∣
E
AA^*=A^*A=|A|E
AA∗=A∗A=∣A∣E
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} ∣A∗∣=∣A∣n−1
( A ∗ ) − 1 = ( A − 1 ) ∗ = A ∣ A ∣ (A^*)^{-1}=(A^{-1})^*=dfrac{A}{|A|} (A∗)−1=(A−1)∗=∣A∣A
( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A∗)T=(AT)∗
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)∗=kn−1A∗
( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 2 ) (A^*)^*=|A|^{n-2}A(n≥2) (A∗)∗=∣A∣n−2A(n≥2)
可逆矩阵
(
A
T
)
−
1
=
(
A
−
1
)
T
(A^T)^{-1}=(A^{-1})T
(AT)−1=(A−1)T
( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A−1)−1=A
∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=dfrac{1}{|A|} ∣A−1∣=∣A∣1
∣ A − 1 ∣ = ∣ A ∗ ∣ ∣ A ∣ |A^{-1}|=dfrac{|A^*|}{|A|} ∣A−1∣=∣A∣∣A∗∣
分块矩阵
[
A
O
O
B
]
=
[
A
C
O
B
]
=
[
A
O
C
B
]
=
∣
A
∣
∣
B
∣
begin{bmatrix}A&O\O&Bend{bmatrix}=begin{bmatrix}A&C\O&Bend{bmatrix}=begin{bmatrix}A&O\C&Bend{bmatrix}=|A| |B|
[AOOB]=[AOCB]=[ACOB]=∣A∣∣B∣
[
O
A
B
O
]
=
[
C
A
B
O
]
=
[
O
A
B
C
]
=
(
−
1
)
m
.
n
∣
A
∣
∣
B
∣
begin{bmatrix}O&A\B&Oend{bmatrix}=begin{bmatrix}C&A\B&Oend{bmatrix}=begin{bmatrix}O&A\B&Cend{bmatrix}=(-1)^{m.n}|A| |B|
[OBAO]=[CBAO]=[OBAC]=(−1)m.n∣A∣∣B∣(其中A代表m阶矩阵,B代表n阶矩阵)
已知分块矩阵求逆矩阵
A
=
[
A
1
0
0
A
2
]
A=begin{bmatrix}A_1&0\0&A_2end{bmatrix}
A=[A100A2]且A1,A2可逆, 则
A
−
1
=
[
A
1
−
1
0
0
A
2
−
1
]
A^{-1}=begin{bmatrix}A_1^{-1}&0\0&A_2^{-1}end{bmatrix}
A−1=[A1−100A2−1]
另外一种情况:
A
=
[
0
A
1
A
2
0
]
,
则
A
−
1
=
[
0
A
2
−
1
A
1
−
1
0
]
A=begin{bmatrix}0&A_1\A_2&0end{bmatrix},则A^{-1}=begin{bmatrix}0&A_2^{-1}\A_1^{-1}&0end{bmatrix}
A=[0A2A10],则A−1=[0A1−1A2−10]
相似矩阵
A
=
P
−
1
B
P
A=P^{-1}BP
A=P−1BP
常见分布公式
X~N(0,1)(标准正态分布)
X~N(
u
,
σ
2
u,σ^2
u,σ2)(正态分布)
概率密度函数:
f
(
x
)
=
(
e
−
(
x
−
u
)
2
2
σ
2
2
π
σ
)
f(x)=(dfrac{e^{-dfrac{(x-u)^2}{2σ^2}}}{ sqrt{2pi}σ})
f(x)=(2πσe−2σ2(x−u)2)
二维正态分布
联合概率密度:
g
(
x
,
y
)
=
1
2
π
σ
1
σ
2
1
−
p
2
e
x
p
g(x,y)=dfrac{1}{2piσ_1σ_2 sqrt{1-p^2}}exp
g(x,y)=2πσ1σ21−p21exp
(
−
1
2
(
1
−
p
2
)
[
(
x
−
u
1
)
2
σ
1
2
−
2
p
(
x
−
u
1
)
(
y
−
u
2
)
σ
1
σ
2
+
(
y
−
u
2
)
2
σ
2
2
]
)
(-dfrac{1}{2(1-p^2)}[dfrac{(x-u_1)^2}{σ_1^2}-2p dfrac{(x-u_1)(y-u_2)}{σ_1σ_2}+dfrac{(y-u_2)^2}{σ_2^2}])
(−2(1−p2)1[σ12(x−u1)2−2pσ1σ2(x−u1)(y−u2)+σ22(y−u2)2])
超几何分布
公式:
C
M
k
C
N
−
M
n
−
k
C
N
M
dfrac{C_M^kC_{N-M}^{n-k}}{C_N^M}
CNMCMkCN−Mn−k
指数分布
分布函数:
F
(
x
)
=
{
1
−
e
−
λ
x
0
≤
x
0
x
<
0
F(x)=begin{cases}1-e^{-λx}&0≤x\0&x<0end{cases}
F(x)={1−e−λx00≤xx<0
概率密度函数 f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 f(x)=begin{cases}λe^{-λx}&x>0\0&x≤0end{cases} f(x)={λe−λx0x>0x≤0
均匀分布
X~U(a,b)
分布函数:
F
(
x
)
=
{
0
x
<
a
x
−
a
b
−
a
a
≤
x
<
b
1
b
≤
x
F(x)=begin{cases}0&x<a\dfrac{x-a}{b-a}&a≤x<b\1&b≤xend{cases}
F(x)=⎩⎪⎪⎨⎪⎪⎧0b−ax−a1x<aa≤x<bb≤x
概率密度函数: f ( x ) = { 1 b − a a < x < b 0 其 它 f(x)=begin{cases}dfrac{1}{b-a}&a<x<b\0&其它end{cases} f(x)=⎩⎨⎧b−a10a<x<b其它
二项分布
X~B(n,p)
分布律:
P
(
X
=
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
P(X=k)=C_n^kp^k(1-p)^{n-k}
P(X=k)=Cnkpk(1−p)n−k
泊松分布
P(X=k)=
λ
k
k
!
e
−
λ
dfrac{λ^k}{k!}e^{-λ}
k!λke−λ, k>0
P(X1+X2=k)=
(
X
1
+
X
2
)
k
k
!
e
−
(
X
1
+
X
2
)
dfrac{(X1+X2)^k}{k!}e^{-(X1+X2)}
k!(X1+X2)ke−(X1+X2)
期望计算公式
E
(
X
)
=
∫
−
∞
+
∞
x
f
(
x
)
d
x
E(X)=int_{-∞}^{+∞}{xf(x)dx}
E(X)=∫−∞+∞xf(x)dx
如果是E(
X
2
X^2
X2)的话, 则
E
(
X
2
)
=
∫
−
∞
+
∞
x
2
f
(
x
)
d
x
E(X^2)=int_{-infin}^{+infin}{x^2f(x)dx}
E(X2)=∫−∞+∞x2f(x)dx,
所以可知左边X决定右边f(x)左边的X, 与f(x)概率密度无关
E
(
X
)
=
∑
k
=
1
∞
k
.
P
(
X
=
k
)
E(X)=sumlimits_{k=1}^{∞}k.P(X=k)
E(X)=k=1∑∞k.P(X=k)
离散型
E
(
X
)
=
∑
i
=
1
∞
x
i
P
i
E(X)=sum_{i=1}^{∞}x_iP_i
E(X)=∑i=1∞xiPi
E
[
g
(
x
)
]
=
∑
i
=
1
∞
g
(
x
i
)
P
i
E[g(x)]=sum_{i=1}^{infin}g(x_i)P_i
E[g(x)]=∑i=1∞g(xi)Pi
E
[
g
(
x
,
y
)
]
=
∑
i
∑
j
g
(
x
i
,
y
i
)
P
i
j
E[g(x,y)]=sum_isum_j{g(x_i,y_i)P_{ij}}
E[g(x,y)]=∑i∑jg(xi,yi)Pij
连续型
E
(
x
)
=
∫
−
∞
∞
x
f
(
x
)
d
x
E(x)=int_{-infin}^{infin}{xf(x)dx}
E(x)=∫−∞∞xf(x)dx
E
[
g
(
x
)
]
=
∫
−
∞
+
∞
g
(
x
)
f
(
x
)
d
x
E[g(x)]=int_{-infin}^{+infin}{g(x)f(x)dx}
E[g(x)]=∫−∞+∞g(x)f(x)dx
E
[
g
(
x
,
y
)
]
=
∫
−
∞
+
∞
∫
−
∞
+
∞
g
(
x
,
y
)
f
(
x
,
y
)
d
x
d
y
E[g(x,y)]=int_{-infin}^{+infin} int_{-infin}^{+infin}{g(x,y)f(x,y)dxdy}
E[g(x,y)]=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy
期望的性质
E
(
C
)
=
C
E(C)=C
E(C)=C
E(aX)=aE(X)
E(X+Y)=E(X)+E(Y)
E(aX+bY)=aE(X)+bE(Y)
XY独立→E(XY)=E(X)E(Y)
方差计算公式
方差=平方的期望-期望的平方
D
(
X
)
=
E
[
(
X
‾
−
E
(
X
)
)
2
]
D(X)=E[(overline{X}-E(X))^2]
D(X)=E[(X−E(X))2]
D
(
X
)
=
E
(
X
2
)
−
E
2
(
X
)
D(X)=E(X^2)-E^2(X)
D(X)=E(X2)−E2(X)
X ‾ 与 S 2 overline{X}与S^2 X与S2的联系
1 . E(X)=u, 则
E
(
X
‾
)
=
u
E(overline{X})=u
E(X)=u
2 . D(X)=
σ
2
σ^2
σ2, 则
D
(
X
‾
)
=
σ
2
n
D(overline{X})=dfrac{σ^2}{n}
D(X)=nσ2
3 . D(X)=
σ
2
σ^2
σ2, 则
E
(
S
2
)
=
σ
2
E(S^2)=σ^2
E(S2)=σ2
协方差计算公式
c
o
v
(
X
,
Y
)
=
p
D
(
X
)
D
(
Y
)
cov(X,Y)=p sqrt{D(X)D(Y)}
cov(X,Y)=pD(X)D(Y)
c
o
v
(
X
,
Y
)
=
E
(
X
Y
)
−
E
(
X
)
E
(
Y
)
cov(X,Y)=E(XY)-E(X)E(Y)
cov(X,Y)=E(XY)−E(X)E(Y)可知方差是协方差的特例, 因为方差=平方的期望-期望的平方
当两变量相互独立时, 根据公式2可知协方差的值为0
常见分布的期望与方差
二项分布B(n,p) 期望: np 方差: np(1-p)
泊松分布P(λ) 期望: λ 方差: λ
几何分布G§ 期望:
1
p
dfrac{1}{p}
p1 方差:
1
−
p
p
2
dfrac{1-p}{p^2}
p21−p
均匀分布U(a,b) 期望:
a
+
b
2
dfrac{a+b}{2}
2a+b 方差:
(
b
−
a
)
2
12
dfrac{(b-a)^2}{12}
12(b−a)2
指数分布E(λ) 期望:
1
λ
dfrac{1}{λ}
λ1 方差:
1
λ
2
dfrac{1}{λ^2}
λ21
正态分布N(u,
σ
2
σ^2
σ2) 期望: u 方差:
σ
2
σ^2
σ2
x
2
分
布
x
2
(
n
)
x^2分布x^2(n)
x2分布x2(n) 期望: n 方差: 2n
t分布t(n) 期望: 0 方差:
n
n
−
2
dfrac{n}{n-2}
n−2n
其他分布
正态分布→标准正态分布→卡方分布→F分布
t分布: X Y / n dfrac{X}{ sqrt{Y/n}} Y/nX
X^2分布(卡方分布):是n个标准正态分布的平方和F分布:
F
=
X
/
n
Y
/
m
∼
F
(
n
,
m
)
F=dfrac{X/n}{Y/m} sim F(n,m)
F=Y/mX/n∼F(n,m)一个卡方分布/其自由度 / 另一个卡方分布/其自由度
最后
以上就是无限小蝴蝶为你收集整理的常用数学公式的全部内容,希望文章能够帮你解决常用数学公式所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复