我是靠谱客的博主 无限小蝴蝶,最近开发中收集的这篇文章主要介绍常用数学公式,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

等价无穷小代换

sinx~x, arcsinx~x, tanx~x, arctanx~x, 1-cosx~ 1 2 x 2 dfrac12x^2 21x2
1 − c o s a x = a x 2 2 1-cos^ax=dfrac{ax^2}{2} 1cosax=2ax2
e x − 1 e^x-1 ex1~x,
a x − 1 a^x-1 ax1~xlna
ln(1+x)~x

( 1 + x ) a − 1 (1+x)^a-1 (1+x)a1~ax (a≠0)

x-sinx~ 1 6 x 3 dfrac16x^3 61x3, arcsinx-x~ 1 6 x 3 dfrac16x^3 61x3, tanx-x~ 1 3 x 3 dfrac13x^3 31x3, x-arctanx~ 1 3 x 3 dfrac13x^3 31x3

x-ln(1+x)~ 1 2 x 2 dfrac12x^2 21x2

n 1 + x ^nsqrt{1+x} n1+x -1~ 1 n x dfrac1nx n1x

1 + x − 1 − x sqrt{1+x}-sqrt{1-x} 1+x 1x ~x

无穷大的比较

当n→∞时: l n a n < < n B < < a n < < n ! < < n n ln^an<<n^B<<a^n<<n!<<n^n lnan<<nB<<an<<n!<<nn
其中a,B>0, a>1

三角函数公式

​sin2x=2sinxcosx, s i n 2 x = 1 2 ( 1 − c o s 2 x ) sin^2x = dfrac12(1-cos2x) sin2x=21(1cos2x), c o s 2 x = 1 2 ( 1 + c o s 2 x ) cos^2x = dfrac12(1+cos2x) cos2x=21(1+cos2x)

c o s 2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x cos2x=cos2xsin2x=2cos2x1=12sin2x

s e c x = 1 c o s x secx = dfrac{1}{cosx} secx=cosx1, c s c x = 1 s i n x cscx = dfrac{1}{sinx} cscx=sinx1

s i n x c o s x = t a n x dfrac{sinx}{cosx} = tanx cosxsinx=tanx, c o s x s i n x = c o t x dfrac{cosx}{sinx} = cotx sinxcosx=cotx, t a n x = s i n x 1 − s i n 2 x = 1 − c o s 2 x c o s x tanx = dfrac{sinx}{sqrt{1-sin^2x}} = dfrac{sqrt{1-cos^2x}}{cosx} tanx=1sin2x sinx=cosx1cos2x

s i n 2 x + c o s 2 x = 1 , 1 + t a n 2 x = s e c 2 x , 1 + c o t 2 x = c s c 2 x sin^2x+cos^2x = 1,quad1+tan^2x = sec^2x,quad1+cot^2x = csc^2x sin2x+cos2x=1,1+tan2x=sec2x,1+cot2x=csc2x

s i n 2 x = 1 − c o s 2 x 2 sin^2x=dfrac{1-cos2x}{2} sin2x=21cos2x

c o s 2 x = 1 + c o s 2 x 2 cos^2x=dfrac{1+cos2x}{2} cos2x=21+cos2x
cos(-x)=cosx
sin(-x)=-sin(-x)

求导公式

( C ) ′ = 0 , ( x a ) = a x a − 1 , ( a x ) ′ = a x l n a (C)' = 0,quad(x^a) = ax^{a-1},quad(a^x)' = a^xlna (C)=0,(xa)=axa1,(ax)=axlna

( l o g a x ) ′ = 1 x l n a , ( t a n x ) ′ = s e c 2 x , ( c o t x ) ′ = − c s c 2 x (log_ax)' = dfrac{1}{xlna},quad(tanx)' = sec^2x,quad(cotx)' = -csc^2x (logax)=xlna1,(tanx)=sec2x,(cotx)=csc2x

( s e c x ) ′ = s e c x t a n x , ( c s c x ) ′ = − c s c x c o t x (secx)' = secxtanx,quad(cscx)' = -cscxcotx (secx)=secxtanx,(cscx)=cscxcotx

( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)' = dfrac{1}{sqrt{1-x^2}} (arcsinx)=1x2 1
 
( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)' = -dfrac{1}{sqrt{1-x^2}} (arccosx)=1x2 1
 
( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)' = dfrac{1}{1+x^2} (arctanx)=1+x21
 
( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)' = -dfrac{1}{1+x^2} (arccotx)=1+x21

( e − ( x − t ) 2 ) ′ = − 2 ( x − t ) ( x ′ − 1 ) e − ( x − t ) 2 (e^{-(x-t)^2})'=-2(x-t)(x'-1)e^{-(x-t)^2} (e(xt)2)=2(xt)(x1)e(xt)2

n阶导公式

( e a x + b ) n = a n e a x + b (e^{displaystyle{ax+b}})^n=a^ne^{displaystyle{ax+b}} (eax+b)n=aneax+b

( s i n ( a x + b ) ) n = a n s i n ( a x + b + π 2 n ) (sin(ax+b))^n=a^nsin(ax+b+dfrac{pi}{2}n) (sin(ax+b))n=ansin(ax+b+2πn)

( c o s ( a x + b ) ) n = a n c o s ( a x + b + π 2 n ) (cos(ax+b))^n=a^ncos(ax+b+dfrac{pi}{2}n) (cos(ax+b))n=ancos(ax+b+2πn)

( l n ( a x + b ) ) n = ( − 1 ) n − 1 a n ( n − 1 ) ! ( a x + b ) n (ln(ax+b))^n=(-1)^{n-1}a^n dfrac{(n-1)!}{(ax+b)^n} (ln(ax+b))n=(1)n1an(ax+b)n(n1)!

( 1 a x + b ) n = ( − 1 ) n a n n ! ( a x + b ) n + 1 (dfrac{1}{ax+b})^n=(-1)^na^n dfrac{n!}{(ax+b)^{n+1}} (ax+b1)n=(1)nan(ax+b)n+1n!

微分方程

一阶线性非齐次微分方程解的公式

y = e − ∫ p ( x ) d x [ ∫ Q ( x ) e ∫ p ( x ) d x d x + C ] y=e^{displaystyle{-int{p(x)}dx}}[int{Q(x)e^{displaystyle{int{p(x)dx}}}dx+C}] y=ep(x)dx[Q(x)ep(x)dxdx+C]

二阶常系数齐次微分方程解的特征
对y’‘+py’+qy=0
特征方程: r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0

设r1,r2是特征方程的两个根

不等实根 r 1 ≠ r 2 r_1≠r_2 r1=r2
y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x

相等实根 r 1 = r 2 = r r_1=r_2=r r1=r2=r
y = e r x ( C 1 + C 2 x ) y=e^{rx}(C_1+C_2x) y=erx(C1+C2x)

共轭复根 y = e a x ( C 1 c o s B x + C 2 s i n B x ) y=e^{ax}(C_1cosBx+C_2sinBx) y=eax(C1cosBx+C2sinBx)

出现共轭复根的条件是Δ<0即 b 2 − 4 a c < 0 b^2-4ac<0 b24ac0, 此时解为

− b ± b 2 − 4 a c 2 a = − b ± ( − 1 ) ( 4 a c − b 2 ) 2 a dfrac{-b± sqrt{b^2-4ac}}{2a}=dfrac{-b± sqrt{(-1)(4ac-b^2)}}{2a} 2ab±b24ac =2ab±(1)(4acb2) , 因为 − 1 = i sqrt{-1}=i 1 i , 所以原式可化为

− b ± 4 a c − b 2 i 2 a dfrac{-b± sqrt{4ac-b^2}i}{2a} 2ab±4acb2 i

a = − b 2 a a=-dfrac{b}{2a} a=2ab, b = 4 a c − b 2 2 a b=dfrac{sqrt{4ac-b^2}}{2a} b=2a4acb2

可得共轭复根 r 1 , 2 = a ± b i r_{1,2}=a±bi r1,2=a±bi

积分公式

三角函数有理数万能公式
t = t a n x 2 tandfrac{x}2 tan2x, sinx = 2 t 1 + t 2 dfrac{2t}{1+t^2} 1+t22t, cosx = 1 − t 2 1 + t 2 dfrac{1-t^2}{1+t^2} 1+t21t2, dx = 2 1 + t 2 d t dfrac{2}{1+t^2}dt 1+t22dt
点火公式
∫ 0 π 2 s i n 3 ∣ 4 x d x = ∫ 0 π 2 c o s 3 ∣ 4 x = { 2 3 . 1 3 4 . 1 2 . π 2 int_{0}^{dfrac{pi}{2}}{sin^{3|4}xdx}=int_{0}^{dfrac{pi}{2}}{cos^{3|4}x}=begin{cases}dfrac{2}{3}.1\ \ dfrac{3}{4}.dfrac{1}{2}.dfrac{pi}{2}end{cases} 02πsin34xdx=02πcos34x=32.143.21.2π
积分公式
∫ 1 x d x = l n ∣ x ∣ + C intdfrac{1}{x}dx = ln|x|+C x1dx=lnx+C

∫ a x d x = a x l n a + C ( a > 0 , a ≠ 1 ) int{a^x}dx = dfrac{a^x}{lna}+C(a>0,anot=1) axdx=lnaax+C(a>0,a=1)

∫ e x d x = e x + C int{e^xdx} = e^x+C exdx=ex+C

∫ s i n x d x = − c o s x + C int{sinxdx} = -cosx + C sinxdx=cosx+C

∫ c o s x d x = s i n x + C int{cosxdx} = sinx+C cosxdx=sinx+C

∫ t a n x d x = − l n ∣ c o s x ∣ + C int{tanxdx} = -ln|cosx|+C tanxdx=lncosx+C

∫ c o t x d x = l n ∣ s i n x ∣ + C int{cotxdx} = ln|sinx|+C cotxdx=lnsinx+C

∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C int{secxdx} = ln|secx+tanx|+C secxdx=lnsecx+tanx+C

∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C int{cscxdx} = ln|cscx-cotx|+C cscxdx=lncscxcotx+C

∫ s e c 2 x d x = t a n x + C int{sec^2xdx} = tanx+C sec2xdx=tanx+C

∫ c s c 2 x d x = − c o t x + C int{csc^2xdx} = -cotx+C csc2xdx=cotx+C

∫ 0 d x = C , ∫ 1 d x = ∫ d x = x + C int0dx = C,quadint1dx = int dx = x+C 0dx=C,1dx=dx=x+C

∫ x a d x = 1 a + 1 x a + 1 + C ( a ≠ − 1 ) int{x^a}dx = dfrac{1}{a+1}x^{a+1}+C(anot=-1) xadx=a+11xa+1+C(a=1)

∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C int{dfrac{1}{a^2+x^2}dx = dfrac{1}{a}arctandfrac{x}{a}+C} a2+x21dx=a1arctanax+C

∫ 1 a 2 − x 2 d x = 1 2 a l n ∣ a + x a − x ∣ + C {intdfrac{1}{a^2-x^2}dx} = dfrac{1}{2a}ln|dfrac{a+x}{a-x}|+C a2x21dx=2a1lnaxa+x+C

∫ 1 a 2 − x 2 d x = a r c s i n x a + C int{dfrac{1}{sqrt{a^2-x^2}}dx} = arcsindfrac{x}{a} +C a2x2 1dx=arcsinax+C

∫ 1 x 2 ± a 2 d x = l n ∣ x + x 2 ± a 2 ∣ + C int{dfrac{1}{sqrt{x^2pm a^2}}dx} = ln|x+sqrt{x^2pm a^2}|+C x2±a2 1dx=lnx+x2±a2 +C

∫ t a n 2 x d x = t a n x − x + C int{tan^2xdx} = tanx-x+C tan2xdx=tanxx+C

∫ a 2 − x 2 d x = 1 2 x a 2 − x 2 + a 2 2 a r c s i n x a + C int{sqrt{a^2-x^2}dx}=dfrac{1}{2}x sqrt{a^2-x^2}+dfrac{a^2}{2}arcsin dfrac{x}{a}+C a2x2 dx=21xa2x2 +2a2arcsinax+C

∫ a 2 + x 2 = x 2 a 2 + x 2 + a 2 2 l n ∣ x + a 2 + x 2 ∣ + C int{sqrt{a^2+x^2}}=dfrac{x}{2} sqrt{a^2+x^2}+dfrac{a^2}{2}ln|x+sqrt{a^2+x^2}|+C a2+x2 =2xa2+x2 +2a2lnx+a2+x2 +C

∫ l n ( 1 + x ) d x = ( 1 + x ) l n ( 1 + x ) − x + C int{ln(1+x)dx}=(1+x)ln(1+x)-x+C ln(1+x)dx=(1+x)ln(1+x)x+C

∫ c o s x s i n 2 x d x = − 1 s i n x + C intdfrac{cosx}{sin^2x}dx=-dfrac{1}{sinx}+C sin2xcosxdx=sinx1+C

∫ 1 s i n x = l n ∣ c s c x − c o t x ∣ + C intdfrac{1}{sinx}=ln{|cscx-cotx|}+C sinx1=lncscxcotx+C

∫ 1 c o s x = l n ∣ s e c x + t a n x ∣ + C intdfrac{1}{cosx}=ln{|secx+tanx|}+C cosx1=lnsecx+tanx+C
 
∫ 1 t a n x = l n ∣ s i n x ∣ + C int{dfrac{1}{tanx}}=ln|sinx|+C tanx1=lnsinx+C

∫ e x c o s x d x = e x ( s i n x + c o s x ) 2 + C int{e^xcosx}dx=dfrac{e^x(sinx+cosx)}{2}+C excosxdx=2ex(sinx+cosx)+C

积分计算圆的公式
∫ 0 a a 2 − x 2 d x = π 4 a 2 int_{0}^{a}{ sqrt{a^2-x^2}dx}=dfrac{pi}{4}a^2 0aa2x2 dx=4πa2

∫ 0 a 2 a x − x 2 d x = π 4 a 2 int_{0}^{a}{ sqrt{2ax-x^2}dx}=dfrac{pi}{4}a^2 0a2axx2 dx=4πa2

∫ 1 1 + x 2 d x = l n ( x + 1 + x 2 ) + C int{dfrac{1}{sqrt{1+x^2}}dx}=ln(x+sqrt{1+x^2})+C 1+x2 1dx=ln(x+1+x2 )+C

与三角函数周期性有关的积分公式

∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x displaystyleint_{0}^{dfrac{pi}{2}}{f(sinx)dx}=int_{0}^{ dfrac{pi}{2}}{f(cosx)dx} 02πf(sinx)dx=02πf(cosx)dx
 
∫ 0 π f ( s i n x ) d x = 2 ∫ 0 π 2 f ( s i n x ) d x displaystyleint_{0}^{pi}{f(sinx)dx}=2 int_{0}^{ dfrac{pi}{2}}{f(sinx)dx} 0πf(sinx)dx=202πf(sinx)dx

∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π 2 f ( s i n x ) d x displaystyleint_{0}^{pi}{xf(sinx)dx}=dfrac{pi}{2} int_{0}^{ dfrac{pi}{2}}{f(sinx)dx} 0πxf(sinx)dx=2π02πf(sinx)dx

两点确定一条直线 : ( x − x 1 ) / ( x 2 − x 1 ) = ( y − y 1 ) / ( y 2 − y 1 ) (x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1) (xx1)/(x2x1)=(yy1)/(y2y1)

常见曲线方程及图像

星形线: x 2 3 + y 2 3 = r 2 3 x^{dfrac{2}{3}}+y^{dfrac{2}{3}}=r^{dfrac{2}{3}} x32+y32=r32

心形线:
r=a(1-cosθ)
r=a(1+cosθ) (a>0)

玫瑰线:
r=asin3θ(a>0)

阿基米德螺旋线:
r=aθ

伯努利双扭线:
极坐标形式:
r 2 = a 2 c o s 2 θ r^2=a^2cos2θ r2=a2cos2θ
r 2 = a 2 s i n 2 θ r^2=a^2sin2θ r2=a2sin2θ
直角坐标形式:
( x 2 + y 2 ) 2 = 2 a 2 ( x 2 − y 2 ) (x^2+y^2)^2=2a^2(x^2-y^2) (x2+y2)2=2a2(x2y2)

摆线(旋轮线)
x=r(t-sint)
y=r(1-cost)
当t= π pi π时, x代表摆线图像在x轴得中间点, y代表类圆形的最大值
t代表角度, t= π pi π代表旋转了180

椭圆方程
x 2 a 2 + y 2 b 2 = 1 dfrac{x^2}{a^2}+dfrac{y^2}{b^2}=1 a2x2+b2y2=1
长轴: 2a; 长半轴: a
短轴: 2b; 短半轴: b
焦点: F 1 ( − c , 0 ) , F 2 ( c , 0 ) F_1(-c,0),F_2(c,0) F1(c,0),F2(c,0)
焦距: ∣ F 1 F 2 ∣ |F_1F_2| F1F2
椭圆上任意动点与焦点距离之和为2a,即
∣ P F 1 + P F 2 ∣ = 2 a |PF_1+PF_2|=2a PF1+PF2=2a
椭圆面积为 π a b pi ab πab

形心公式
1 . 一重积分的形心公式
x ‾ = ∫ a b x f ( x ) d x ∫ a b f ( x ) d x overline{x}=dfrac{int_{a}^{b}{xf(x)dx}}{ int_{a}^{b}{f(x)}dx} x=abf(x)dxabxf(x)dx

y ‾ = ∫ a b y f ( y ) d y ∫ a b f ( y ) d y overline{y}=dfrac{int_{a}^{b}{yf(y)}dy}{ int_{a}^{b}{f(y)dy}} y=abf(y)dyabyf(y)dy

2 . 二重积分的形心公式
x ‾ = ∬ D x d σ S overline{x}=dfrac{iint limits_{D} {xdσ}}{S} x=SDxdσ
 
y ‾ = ∬ D y d σ S overline{y}=dfrac{iint limits_{D} {ydσ}}{S} y=SDydσ

3 . 三重积分的形心公式
x ‾ = 1 V ∭ Ω x d V overline{x}=dfrac{1}{V}iiint limits_{Ω} xdV x=V1ΩxdV
y ‾ = 1 V ∭ Ω y d V overline{y}=dfrac{1}{V}iiint limits_{Ω}ydV y=V1ΩydV
z ‾ = 1 V ∭ Ω z d V overline{z}=dfrac{1}{V}iiint limits_{Ω}zdV z=V1ΩzdV

引力计算公式
F = G m 1 m 2 r 2 F=G dfrac{m_1m_2}{r^2} F=Gr2m1m2
G称为引力系数

无穷级数

泰勒展开拉格朗日余项公式
l n ( 1 + x ) = ( − 1 ) n − 1 x n n ln(1+x)=dfrac{(-1)^{n-1}x^n}{n} ln(1+x)=n(1)n1xn

− l n ( 1 − x ) = ∑ 1 ∞ x n n -ln(1-x)=sumlimits_1^∞ dfrac{x^n}{n} ln(1x)=1nxn

s i n x = ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx=dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!} sinx=(2n+1)!(1)nx2n+1

c o s x = ( − 1 ) n x 2 n ( 2 n ) ! cosx=dfrac{(-1)^nx^{2n}}{(2n)!} cosx=(2n)!(1)nx2n

1 1 + x = ( − 1 ) n x n dfrac{1}{1+x}=(-1)^nx^n 1+x1=(1)nxn

傅里叶级数
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n c o s ( n π t l ) + b n s i n ( n π t l ) ] f(t)=dfrac{a_0}{2}+sumlimits_{n=1}^{infin}{[a_ncos(dfrac{npi t}{l})+b_nsin(dfrac{npi t}{l})]} f(t)=2a0+n=1[ancos(lnπt)+bnsin(lnπt)]

a n = 1 l ∫ − l l f ( t ) c o s ( n π t l ) d t , n = 0 , 1 , 2 , 3... a_n=dfrac{1}{l}int_{-l}^{l}{f(t)cos(dfrac{npi t}{l})dt}, n=0,1,2,3... an=l1llf(t)cos(lnπt)dt,n=0,1,2,3...

b n = 1 l ∫ − l l f ( t ) s i n ( n u t l d t ) , n = 1 , 2 , 3... b_n=dfrac{1}{l} int_{-l}^{l}{f(t)sin(dfrac{nut}{l}dt)}, n=1,2,3... bn=l1llf(t)sin(lnutdt),n=1,2,3...

斯特林公式 n!= 2 π n ( n e ) n sqrt{2pi n}(dfrac{n}{e})^n 2πn (en)n,
伽马函数

∫ 0 + ∞ x n e − x d x = n ! int_{0}^{+infin}{x^{n}e^{-x}dx}=n! 0+xnexdx=n!

求幂级数常用公式

∑ n = 0 ∞ x n = 1 1 − x sumlimits_{n=0}^{infin}x^n=dfrac{1}{1-x} n=0xn=1x1(-1,1)

∑ n = 0 ∞ ( n + 1 ) x n = 1 ( 1 − x ) 2 sumlimits_{n=0}^{infin}{(n+1)x^n=dfrac{1}{(1-x)^2}} n=0(n+1)xn=(1x)21(-1,1)

∑ n = 0 ∞ ( n + 2 ) ( n + 1 ) x n = 2 ( 1 − x ) 3 sumlimits_{n=0}^{infin}{(n+2)(n+1)x^n=dfrac{2}{(1-x)^3}} n=0(n+2)(n+1)xn=(1x)32(-1,1)

∑ n = 0 ∞ x n + 1 n + 1 = − l n ( 1 − x ) sumlimits_{n=0}^{infin}{dfrac{x^{n+1}}{n+1}}=-ln(1-x) n=0n+1xn+1=ln(1x)[-1,1)

∑ n = 0 ∞ x 2 n + 1 2 n + 1 = 1 2 l n 1 + x 1 − x sumlimits_{n=0}^{infin}{ dfrac{x^{2n+1}}{2n+1}}=dfrac{1}{2}ln{dfrac{1+x}{1-x}} n=02n+1x2n+1=21ln1x1+x(-1,1)

∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = a r c t a n x sumlimits_{n=0}^{infin}{ dfrac{(-1)^{n}x^{2n+1}}{2n+1}}=arctanx n=02n+1(1)nx2n+1=arctanx[-1,1]

∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = s i n x sumlimits_{n=0}^{infin}{ dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!}}=sinx n=0(2n+1)!(1)nx2n+1=sinx

∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = c o s x sumlimits_{n=0}^{infin}{ dfrac{(-1)^{n}x^{2n}}{(2n)!}}=cosx n=0(2n)!(1)nx2n=cosx

∑ n = 0 ∞ x n n ! = e x sumlimits_{n=0}^{infin}{ dfrac{x^{n}}{n!}}=e^{x} n=0n!xn=ex

曲线曲面积分

格林公式
∫ ( + C ) P ( x , y ) d x + Q ( x , y ) d y = ∬ ( σ ) ( σ Q σ x − σ P σ y ) d x d y intlimits_{(+C)}P(x,y)dx+Q(x,y)dy=iintlimits_{(σ)}(dfrac{σQ}{σx}-dfrac{σP}{σy})dxdy (+C)P(x,y)dx+Q(x,y)dy=(σ)(σxσQσyσP)dxdy

斯托克斯公式
∫ L P d x + Q d y + R d z = ∬ ∑ [ c o s a c o s B c o s r ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ] d s int limits_{L} {Pdx+Qdy+Rdz}=iint limits_{sum} begin{bmatrix}cosa&cosB&cosr\dfrac{partial{}}{partial{x}}&dfrac{partial{}}{partial{y}}&dfrac{partial{}}{partial{z}}\P&Q&Rend{bmatrix}ds LPdx+Qdy+Rdz=cosaxPcosByQcosrzRds

高斯公式
∬ ∑ P d y d z + Q d z d x + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V iint limits_{sum{}} {Pdydz+Qdzdx+Rdxdy}=iiint limits_{Ω} {(dfrac{partial{P}}{ partial{x}}+dfrac{partial{Q}}{ partial{y}}+dfrac{partial{R}}{ partial{z}})dV} Pdydz+Qdzdx+Rdxdy=Ω(xP+yQ+zR)dV

不等式公式

a 2 + b 2 ≥ 2 a b a^2+b^2≥2ab a2+b22ab

x 1 + x < l n ( 1 + x ) < x , x ∈ ( 0 , + ∞ ) displaystylefrac{x}{1+x}<ln(1+x)<x, x∈(0,+∞) 1+xx<ln(1+x)<x,x(0,+)

s i n x < x < t a n x sinx<x<tanx sinx<x<tanx

a 1 a 2 . . . a n n ≤ a 1 + a 2 + . . . + a n n displaystylesqrt[displaystyle{n}]{a_1a_2...a_n}≤displaystylefrac{a_1+a_2+...+a_n}{n} na1a2...an na1+a2+...+an

e x ≥ 1 + x displaystyle {e^{displaystyle{x}}}≥1+x ex1+x

l n x ≤ x − 1 lnx≤x-1 lnxx1

矩阵公式

伴随矩阵
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1

( A ∗ ) − 1 = ( A − 1 ) ∗ = A ∣ A ∣ (A^*)^{-1}=(A^{-1})^*=dfrac{A}{|A|} (A)1=(A1)=AA

( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A)T=(AT)

( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A

( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 2 ) (A^*)^*=|A|^{n-2}A(n≥2) (A)=An2A(n2)

可逆矩阵
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})T (AT)1=(A1)T

( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A

∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=dfrac{1}{|A|} A1=A1

∣ A − 1 ∣ = ∣ A ∗ ∣ ∣ A ∣ |A^{-1}|=dfrac{|A^*|}{|A|} A1=AA

分块矩阵
[ A O O B ] = [ A C O B ] = [ A O C B ] = ∣ A ∣ ∣ B ∣ begin{bmatrix}A&O\O&Bend{bmatrix}=begin{bmatrix}A&C\O&Bend{bmatrix}=begin{bmatrix}A&O\C&Bend{bmatrix}=|A| |B| [AOOB]=[AOCB]=[ACOB]=AB
 
[ O A B O ] = [ C A B O ] = [ O A B C ] = ( − 1 ) m . n ∣ A ∣ ∣ B ∣ begin{bmatrix}O&A\B&Oend{bmatrix}=begin{bmatrix}C&A\B&Oend{bmatrix}=begin{bmatrix}O&A\B&Cend{bmatrix}=(-1)^{m.n}|A| |B| [OBAO]=[CBAO]=[OBAC]=(1)m.nAB(其中A代表m阶矩阵,B代表n阶矩阵)

已知分块矩阵求逆矩阵
A = [ A 1 0 0 A 2 ] A=begin{bmatrix}A_1&0\0&A_2end{bmatrix} A=[A100A2]且A1,A2可逆, 则 A − 1 = [ A 1 − 1 0 0 A 2 − 1 ] A^{-1}=begin{bmatrix}A_1^{-1}&0\0&A_2^{-1}end{bmatrix} A1=[A1100A21]
另外一种情况:
 
A = [ 0 A 1 A 2 0 ] , 则 A − 1 = [ 0 A 2 − 1 A 1 − 1 0 ] A=begin{bmatrix}0&A_1\A_2&0end{bmatrix},则A^{-1}=begin{bmatrix}0&A_2^{-1}\A_1^{-1}&0end{bmatrix} A=[0A2A10],A1=[0A11A210]

相似矩阵
A = P − 1 B P A=P^{-1}BP A=P1BP

常见分布公式

X~N(0,1)(标准正态分布)
X~N( u , σ 2 u,σ^2 u,σ2)(正态分布)
概率密度函数: f ( x ) = ( e − ( x − u ) 2 2 σ 2 2 π σ ) f(x)=(dfrac{e^{-dfrac{(x-u)^2}{2σ^2}}}{ sqrt{2pi}σ}) f(x)=(2π σe2σ2(xu)2)

二维正态分布
联合概率密度:
g ( x , y ) = 1 2 π σ 1 σ 2 1 − p 2 e x p g(x,y)=dfrac{1}{2piσ_1σ_2 sqrt{1-p^2}}exp g(x,y)=2πσ1σ21p2 1exp
 
( − 1 2 ( 1 − p 2 ) [ ( x − u 1 ) 2 σ 1 2 − 2 p ( x − u 1 ) ( y − u 2 ) σ 1 σ 2 + ( y − u 2 ) 2 σ 2 2 ] ) (-dfrac{1}{2(1-p^2)}[dfrac{(x-u_1)^2}{σ_1^2}-2p dfrac{(x-u_1)(y-u_2)}{σ_1σ_2}+dfrac{(y-u_2)^2}{σ_2^2}]) (2(1p2)1[σ12(xu1)22pσ1σ2(xu1)(yu2)+σ22(yu2)2])

超几何分布
公式: C M k C N − M n − k C N M dfrac{C_M^kC_{N-M}^{n-k}}{C_N^M} CNMCMkCNMnk

指数分布
分布函数: F ( x ) = { 1 − e − λ x 0 ≤ x 0 x < 0 F(x)=begin{cases}1-e^{-λx}&0≤x\0&x<0end{cases} F(x)={1eλx00xx0

概率密度函数 f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 f(x)=begin{cases}λe^{-λx}&x>0\0&x≤0end{cases} f(x)={λeλx0x>0x0

均匀分布
X~U(a,b)
分布函数: F ( x ) = { 0 x < a x − a b − a a ≤ x < b 1 b ≤ x F(x)=begin{cases}0&x<a\dfrac{x-a}{b-a}&a≤x<b\1&b≤xend{cases} F(x)=0baxa1x<aax<bbx

概率密度函数: f ( x ) = { 1 b − a a < x < b 0 其 它 f(x)=begin{cases}dfrac{1}{b-a}&a<x<b\0&其它end{cases} f(x)=ba10a<x<b

二项分布
X~B(n,p)
分布律: P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_n^kp^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk

泊松分布
P(X=k)= λ k k ! e − λ dfrac{λ^k}{k!}e^{-λ} k!λkeλ, k>0
P(X1+X2=k)= ( X 1 + X 2 ) k k ! e − ( X 1 + X 2 ) dfrac{(X1+X2)^k}{k!}e^{-(X1+X2)} k!(X1+X2)ke(X1+X2)

期望计算公式

E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=int_{-∞}^{+∞}{xf(x)dx} E(X)=+xf(x)dx
如果是E( X 2 X^2 X2)的话, 则
E ( X 2 ) = ∫ − ∞ + ∞ x 2 f ( x ) d x E(X^2)=int_{-infin}^{+infin}{x^2f(x)dx} E(X2)=+x2f(x)dx,
所以可知左边X决定右边f(x)左边的X, 与f(x)概率密度无关
E ( X ) = ∑ k = 1 ∞ k . P ( X = k ) E(X)=sumlimits_{k=1}^{∞}k.P(X=k) E(X)=k=1k.P(X=k)
离散型
E ( X ) = ∑ i = 1 ∞ x i P i E(X)=sum_{i=1}^{∞}x_iP_i E(X)=i=1xiPi
E [ g ( x ) ] = ∑ i = 1 ∞ g ( x i ) P i E[g(x)]=sum_{i=1}^{infin}g(x_i)P_i E[g(x)]=i=1g(xi)Pi
E [ g ( x , y ) ] = ∑ i ∑ j g ( x i , y i ) P i j E[g(x,y)]=sum_isum_j{g(x_i,y_i)P_{ij}} E[g(x,y)]=ijg(xi,yi)Pij
连续型
E ( x ) = ∫ − ∞ ∞ x f ( x ) d x E(x)=int_{-infin}^{infin}{xf(x)dx} E(x)=xf(x)dx
E [ g ( x ) ] = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E[g(x)]=int_{-infin}^{+infin}{g(x)f(x)dx} E[g(x)]=+g(x)f(x)dx
E [ g ( x , y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E[g(x,y)]=int_{-infin}^{+infin} int_{-infin}^{+infin}{g(x,y)f(x,y)dxdy} E[g(x,y)]=++g(x,y)f(x,y)dxdy

期望的性质
E ( C ) = C E(C)=C E(C)=C
E(aX)=aE(X)
E(X+Y)=E(X)+E(Y)
E(aX+bY)=aE(X)+bE(Y)
XY独立→E(XY)=E(X)E(Y)

方差计算公式

方差=平方的期望-期望的平方
D ( X ) = E [ ( X ‾ − E ( X ) ) 2 ] D(X)=E[(overline{X}-E(X))^2] D(X)=E[(XE(X))2]
D ( X ) = E ( X 2 ) − E 2 ( X ) D(X)=E(X^2)-E^2(X) D(X)=E(X2)E2(X)

X ‾ 与 S 2 overline{X}与S^2 XS2的联系

1 . E(X)=u, 则 E ( X ‾ ) = u E(overline{X})=u E(X)=u
2 . D(X)= σ 2 σ^2 σ2, 则 D ( X ‾ ) = σ 2 n D(overline{X})=dfrac{σ^2}{n} D(X)=nσ2
3 . D(X)= σ 2 σ^2 σ2, 则 E ( S 2 ) = σ 2 E(S^2)=σ^2 E(S2)=σ2

协方差计算公式

c o v ( X , Y ) = p D ( X ) D ( Y ) cov(X,Y)=p sqrt{D(X)D(Y)} cov(X,Y)=pD(X)D(Y)
c o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) cov(X,Y)=E(XY)-E(X)E(Y) cov(X,Y)=E(XY)E(X)E(Y)可知方差是协方差的特例, 因为方差=平方的期望-期望的平方
当两变量相互独立时, 根据公式2可知协方差的值为0

常见分布的期望与方差

二项分布B(n,p) 期望: np   方差: np(1-p)
 
泊松分布P(λ) 期望: λ   方差: λ
 
几何分布G§ 期望: 1 p dfrac{1}{p} p1   方差: 1 − p p 2 dfrac{1-p}{p^2} p21p
 
均匀分布U(a,b) 期望: a + b 2 dfrac{a+b}{2} 2a+b   方差: ( b − a ) 2 12 dfrac{(b-a)^2}{12} 12(ba)2
 
指数分布E(λ) 期望: 1 λ dfrac{1}{λ} λ1   方差: 1 λ 2 dfrac{1}{λ^2} λ21
 
正态分布N(u, σ 2 σ^2 σ2) 期望: u   方差: σ 2 σ^2 σ2
 
x 2 分 布 x 2 ( n ) x^2分布x^2(n) x2x2(n) 期望: n   方差: 2n
 
t分布t(n) 期望: 0   方差: n n − 2 dfrac{n}{n-2} n2n

其他分布

正态分布→标准正态分布→卡方分布→F分布

t分布: X Y / n dfrac{X}{ sqrt{Y/n}} Y/n X

X^2分布(卡方分布):是n个标准正态分布的平方和

F分布:
F = X / n Y / m ∼ F ( n , m ) F=dfrac{X/n}{Y/m} sim F(n,m) F=Y/mX/nF(n,m)一个卡方分布/其自由度 / 另一个卡方分布/其自由度

最后

以上就是无限小蝴蝶为你收集整理的常用数学公式的全部内容,希望文章能够帮你解决常用数学公式所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部