我是靠谱客的博主 欣慰白猫,最近开发中收集的这篇文章主要介绍无限维乘积空间(彼此独立)的测度(完),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

符号

T = { t : t ∈ T } T={t: t in T} T={t:tT} 为任意指标集, { ( Ω t , F t ) : t ∈ T } left{left(Omega_{t}, mathscr{F}_{t}right): t in Tright} {(Ωt,Ft):tT} 为一族可测空间,
Ω = ∏ t ∈ T Ω t , F = ∏ t ∈ T F t Omega=underset{t in T}{prod} Omega_{t}, quad mathscr{F}=underset{t in T}{prod}{mathcal{F}}_{t} Ω=tTΩt,F=tTFt
T 1 ⊂ T T_{1} subset T T1T T T T 的任一子集, 记
Ω T 1 = ∏ t ∈ T 1 Ω t , F T 1 = ∏ t ∈ T 1 F t Omega_{T_{1}}=underset{t in T_{1}}{prod} Omega_{t}, quad mathscr{F}_{T_{1}}=underset{t in T_{1}}{prod} mathscr{F}_{t} ΩT1=tT1Ωt,FT1=tT1Ft
也可记 Ω = Ω T , F = F T . Omega=Omega_{T}, mathscr{F}=mathscr{F}_{T} . Ω=ΩT,F=FT.

A ∈ F T 1 A in mathscr{F}_{T_{1}} AFT1
B 1 = { ( ω t , t ∈ T ) ∈ Ω T : ( ω α , α ∈ T 1 ) ∈ A } B_{1}=left{left(omega_{t}, t in Tright) in Omega_{T}:left(omega_{alpha}, alpha in T_{1}right) in Aright} B1={(ωt,tT)ΩT:(ωα,αT1)A}
B 1 B_{1} B1 Ω Omega Ω 中以 A A A 为基底的柱集.

T 1 ⊂ T 2 ⊂ T , T_{1} subset T_{2} subset T, T1T2T,
B 2 = { ( ω t , t ∈ T 2 ) ∈ Ω T 2 : ( ω α , α ∈ T 1 ) ∈ A } B_{2}=left{left(omega_{t}, t in T_{2}right) in Omega_{T_{2}}:left(omega_{alpha}, alpha in T_{1}right) in Aright} B2={(ωt,tT2)ΩT2:(ωα,αT1)A}

B 2 B_{2} B2 Ω T 2 Omega_{T_{2}} ΩT2 中以 A A A 为基底的柱集。

F ‾ T 1 overline{mathscr{F}}_{T_{1}} FT1 F ‾ T 1 T 2 overline{mathscr{F}}_{T_{1}}^{T_{2}} FT1T2 分别表示 F T 1 mathscr{F}_{T_{1}} FT1中所有基底在 Ω Omega Ω Ω T 2 Omega_{T_{2}} ΩT2 中的柱集全体.

C mathscr{C} C 表示 Ω Omega Ω 中基底为有限维可测矩形的柱集全体,
A = ⋃ T 1 ⊂ T F ‾ T 1 mathscr{A}=bigcup_{T_{1} subset T} overline{mathscr{F}}_{T_{1}} A=T1TFT1
表示 Ω Omega Ω 中有限维可测基底的柱集全体, 则由1.3的结果可知, C ⊂ A , mathscr{C} subset mathscr{A}, CA, A mathscr{A} A 为域, σ ( C ) = σ ( A ) = F sigma(mathscr{C})=sigma(mathscr{A})=mathscr{F} σ(C)=σ(A)=F

T 1 ⊂ T 2 ⊂ T , T_{1} subset T_{2} subset T, T1T2T, 规定 Ω T 2 Omega_{T_{2}} ΩT2 Ω T 1 Omega_{T_{1}} ΩT1 的映照 π T 1 T 2 pi_{T_{1}}^{T_{2}} πT1T2 如下:
π T 1 T 2 { ω t : t ∈ T 2 } = { ω t : t ∈ T 1 } pi_{T_{1}}^{T_{2}}left{omega_{t}: t in T_{2}right}=left{omega_{t}: t in T_{1}right} πT1T2{ωt:tT2}={ωt:tT1}
π T 1 T 2 pi_{T_{1}}^{T_{2}} πT1T2 Ω T 2 Omega_{T_{2}} ΩT2 Ω T 1 Omega_{T_{1}} ΩT1 的投影.

A ∈ F T 1 , A in mathscr{F}_{T_{1}}, AFT1, 由于
( π T 1 T 2 ) − 1 A = A × Ω T 2 T 1 left(pi_{T_{1}}^{T_{2}}right)^{-1} A=A times Omega_{T_{2} backslash T_{1}} (πT1T2)1A=A×ΩT2T1
因此 π T 1 T 2 pi_{T_{1}}^{T_{2}} πT1T2 ( Ω T 2 , F T 2 ) left(Omega_{T_{2}}, mathscr{F}_{T_{2}}right) (ΩT2,FT2) ( Ω T 1 , F T 1 ) left(Omega_{T_{1}}, mathscr{F}_{T_{1}}right) (ΩT1,FT1) 的可测映照, 且
( π T 1 T 2 ) − 1 F T 1 = F ‾ T 1 T 2 left(pi_{T_{1}}^{T_{2}}right)^{-1} mathscr{F}_{T_{1}}=overline{mathscr{F}}_{T_{1}}^{T_{2}} (πT1T2)1FT1=FT1T2
(证明:把 F ‾ T 1 T 2 overline{mathscr{F}}_{T_{1}}^{T_{2}} FT1T2的元素写出来就可以了)

P T 2 P_{T_{2}} PT2 ( Ω T 2 , F T 2 ) left(Omega_{T_{2}}, mathscr{F}_{T_{2}}right) (ΩT2,FT2) 上的概率, 则 P T 2 ( π T 1 T 2 ) − 1 P_{T_{2}}left(pi_{T_{1}}^{T_{2}}right)^{-1} PT2(πT1T2)1 ( Ω T 1 , F T 1 ) left(Omega_{T_{1}}, mathscr{F}_{T_{1}}right) (ΩT1,FT1) 上的概率.
(证明: P T 2 ( π T 1 T 2 ) − 1 ( Ω T 1 ) = P T 2 Ω T 2 = 1 P_{T_{2}}left(pi_{T_{1}}^{T_{2}}right)^{-1}(Omega_{T_{1}})=P_{T_{2}}Omega_{T_{2}}=1 PT2(πT1T2)1(ΩT1)=PT2ΩT2=1

反之,对 B ∈ F ‾ T 1 T 2 B in overline{mathscr{F}}_{T_{1}}^{T_{2}} BFT1T2 必存在完全确定的 A = π T 1 T 2 ( B ) ∈ F T 1 , A=pi_{T_{1}}^{T_{2}}(B) in mathscr{F}_{T_{1}}, A=πT1T2(B)FT1, 使 B = ( π T 1 T 2 ) − 1 A . B=left(pi_{T_{1}}^{T_{2}}right)^{-1} A . B=(πT1T2)1A. 所以,
( Ω T 1 , F T 1 ) left(Omega_{T_{1}}, mathscr{F}_{T_{1}}right) (ΩT1,FT1) 上的概率 P T 1 , P_{T_{1}}, PT1,
Q ( B ) = Q ( ( π T 1 T 2 ) − 1 ( A ) ) = P ( A ) Q(B)=Qleft(left(pi_{T_{1}}^{T_{2}}right)^{-1}(A)right)=P(A) Q(B)=Q((πT1T2)1(A))=P(A)
亦可完全确定地在 ( Ω T 2 , F ‾ T 1 T 2 ) left(Omega_{T_{2}}, overline{mathscr{F}}_{T_{1}}^{T_{2}}right) (ΩT2,FT1T2) 上规定一个概率 Q . Q . Q. 特别地, 由 P T 1 P_{T_{1}} PT1 可在 ( Ω , F ‾ T 1 ) left(Omega, overline{mathcal{F}}_{T_{1}}right) (Ω,FT1)
上规定一个概率.

命题 2.5.3

设对 T T T 的有限子集 T 1 = { t 1 , ⋯   , t n } ⊂ T , T_{1}=left{t_{1}, cdots, t_{n}right} subset T, T1={t1,,tn}T, P T 1 P_{T_{1}} PT1 表示 ( Ω T 1 , F T 1 ) left(Omega_{T_{1}}, mathscr{F}_{T_{1}}right) (ΩT1,FT1)
上的概率测度, 则:

对测度族 { P T 1 , left{P_{T_{1}},right. {PT1, 有限 T 1 ⊂ T } , left.T_{1} subset Tright}, T1T}, ( Ω , F ) (Omega, mathscr{F}) (Ω,F) 上存在非负有限可加集函数 P , P, P, 对每个有限 T 1 ⊂ T T_{1} subset Tquad T1T满足
P ( π T 1 T ) − 1 = P T 1 Pleft(pi_{T_{1}}^{T}right)^{-1}=P_{T_{1}}quad P(πT1T)1=PT1
的充要条件是

{ P T 1 , T 1 ⊂ T } left{P_{T_{1}}, T_{1} subset Tright} {PT1,T1T} 满足下列相容性条件:对 T T T 任意有限子集 T 1 , T 2 T_{1}, T_{2} T1,T2, T 1 ⊂ T 2 , T_{1} subset T_{2}, T1T2,
P T 2 ( π T 1 T 2 ) − 1 = P T 1 P_{T_{2}}left(pi_{T_{1}}^{T_{2}}right)^{-1}=P_{T_{1}} PT2(πT1T2)1=PT1

证明: ⇒ Rightarrow 由于 π T 1 T 2 ∘ π T 2 T , pi_{T_{1}}^{T_{2}} circ pi_{T_{2}}^{T}, πT1T2πT2T, 故对 A ∈ F T 1 , A in mathscr{F}_{T_{1}}, AFT1,
( π T 1 T ) − 1 A = ( π T 2 T ) − 1 ( π T 1 T 2 ) − 1 A left(pi_{T_{1}}^{T}right)^{-1} A=left(pi_{T_{2}}^{T}right)^{-1}left(pi_{T_{1}}^{T_{2}}right)^{-1} A (πT1T)1A=(πT2T)1(πT1T2)1A
因此, 若存在 P P P 满足相容性, 必有 P T 1 ( A ) = P ( ( π T 1 T ) − 1 A ) = P ( ( π T 2 T ) − 1 ( π T 1 T 2 ) − 1 A ) = P T 2 ( ( π T 1 T 2 ) − 1 A ) P_{T_{1}}(A)=Pleft(left(pi_{T_{1}}^{T}right)^{-1} Aright)=Pleft(left(pi_{T_{2}}^{T}right)^{-1}left(pi_{T_{1}}^{T_{2}}right)^{-1} Aright)=P_{T_{2}}left(left(pi_{T_{1}}^{T_{2}}right)^{-1} Aright) PT1(A)=P((πT1T)1A)=P((πT2T)1(πT1T2)1A)=PT2((πT1T2)1A)
所以 ⇒ Rightarrow 方向成立。

⇐ Leftarrowquad 首先找到测度 P P P。考虑 B ∈ A B in mathscr{A} BA
B = A 1 × Ω T − T 1 = A 2 × Ω T − T 2 , A 1 ∈ F T 1 , A 2 ∈ F T 2 B=A_{1} times Omega_{T-T_{1}}=A_{2} times Omega_{T-T_{2}}, quad A_{1} in mathscr{F}_{T_{1}}, A_{2} in mathscr{F}_{T_{2}} B=A1×ΩTT1=A2×ΩTT2,A1FT1,A2FT2
其中 T 1 , T 2 T_{1}, T_{2} T1,T2 都是 T T T 的有限子集,则可取 S = T 1 ∪ T 2 S=T_{1} cup T_{2} S=T1T2,将 B B B 记为
( ( π T 1 S ) − 1 A 1 ) × Ω T − S = A 1 × Ω T − T 1 = B = A 2 × Ω T − T 2 = ( ( π T 2 S ) − 1 A 2 ) × Ω T − S left(left(pi_{T_{1}}^{S}right)^{-1} A_{1}right) times Omega_{T-S}=A_{1} times Omega_{T-T_{1}}=B=A_{2} times Omega_{T-T_{2}}=left(left(pi_{T_{2}}^{S}right)^{-1} A_{2}right) times Omega_{T-S} ((πT1S)1A1)×ΩTS=A1×ΩTT1=B=A2×ΩTT2=((πT2S)1A2)×ΩTS
因此 ( π T 1 S ) − 1 A 1 = ( π T 2 S ) − 1 A 2 , left(pi_{T_{1}}^{S}right)^{-1} A_{1}=left(pi_{T_{2}}^{S}right)^{-1} A_{2}, (πT1S)1A1=(πT2S)1A2, ( 2.5.15 ) (2.5 .15) (2.5.15) 式,
P T 1 ( A 1 ) = P S ( ( π T 1 S ) − 1 A 1 ) = P S ( ( π T 2 S ) − 1 A 2 ) = P T 2 ( A 2 ) P_{T_{1}}left(A_{1}right)=P_{S}left(left(pi_{T_{1}}^{S}right)^{-1} A_{1}right)=P_{S}left(left(pi_{T_{2}}^{S}right)^{-1} A_{2}right)=P_{T_{2}}left(A_{2}right) PT1(A1)=PS((πT1S)1A1)=PS((πT2S)1A2)=PT2(A2)
所以对有限维可测基底柱集 B B B, 虽然其基底不是唯一的, 但取其任一基底, 规定
P ( B ) = P T 1 ( A 1 ) P(B)=P_{T_{1}}left(A_{1}right) P(B)=PT1(A1)
F T 1 mathscr{F}_{T_{1}} FT1上的概率,因此也就是 F ‾ T 1 overline{mathscr{F}}_{T_{1}} FT1 上的概率,再证明 A mathscr{A} A上的有限可加性,注意这里 P P P还只是一个有限可加的集函数,不是测度。

定理 2.5.4

{ ( Ω t , F t , P t ) , t ∈ T } left{left(Omega_{t}, mathscr{F}_{t}, P_{t}right), t in Tright} {(Ωt,Ft,Pt),tT} 为一族概率空间, 则在乘积可测空间 ( Ω T , F T ) left(Omega_{T}, mathscr{F}_{T}right) (ΩT,FT) 上存在唯一概率测度 P , P, P, 满足对每个有限 T 1 ⊂ T T_{1} subset T T1T
P ( π T 1 T ) − 1 = ∏ t ∈ T 1 P t Pleft(pi_{T_{1}}^{T}right)^{-1}=underset{t in T_{1}}{mathrm{prod}} P_{t} P(πT1T)1=tT1Pt
注意, ∏ t ∈ T 1 P t underset{t in T_{1}}{mathrm{prod}} P_{t} tT1Pt 是有限乘积空间的测度,可以用于Fubini定理。

证明:所以若 P P P 存在,因为有限维可测矩形柱集全体 C mathscr{C} C 是一个 π pi π 类, σ ( C ) = F sigma(mathscr{C})=mathscr{F} σ(C)=F ,又由 P ( π T 1 T ) − 1 = ∏ t ∈ T 1 P t Pleft(pi_{T_{1}}^{T}right)^{-1}=underset{t in T_{1}}{mathrm{prod}} P_{t} P(πT1T)1=tT1Pt 可以保证在有限维可测矩形柱集上的是唯一确定的,因此唯一性可以保证。

对有限 T 1 ⊂ T , T_{1} subset T, T1T, P T 1 = ∏ t ∈ T 1 P t , P_{T_{1}}=underset{t in T_{1}}{prod} P_{t}, PT1=tT1Pt, 则容易说明 { P T 1 , left{P_{T_{1}},right. {PT1, 有限 T 1 ⊂ T } left.T_{1} subset Tright} T1T} 满足相容性条件,因此由命题 2.5.3可知,可规定 P P P使之在 A mathscr{A} A 上为有限可加的,且 P ( Ω T ) = 1 Pleft(Omega_{T}right)=1 P(ΩT)=1。因而还只需要证明 P P P A mathscr{A} A 上是 σ sigma σ 可加的。

为此, 在下面将证明, 对 A mathscr{A} A 中每个递减到 ∅ varnothing 的序列 { A n } left{A_{n}right} {An} 都有
lim ⁡ n → ∞ P ( A n ) = 0 lim _{n rightarrow infty} Pleft(A_{n}right)=0 nlimP(An)=0

由于 A n A_{n} An 都是有限维柱集, 因此不妨设有 T T T 的可列子集 { t n , n ≥ 1 } left{t_{n}, n geq 1right} {tn,n1} 使每个 A n A_{n} An 都是基底在 F t 1 ⋯ t n mathscr{F}_{t_{1} cdots t_{n}} Ft1tn 的有限维柱集。(可数个可数集合的并是可数的,如果 A n A_{n} An 的基底不够则用 Ω t n Omega_{t_{n}} Ωtn 代替)。

T n T_{n} Tn T T T 的有限子集, 记
Ω T n = ∏ t ∈ T n Ω t , P T n = ∏ t ∈ T n P t Omega_{T_{n}}=underset{t in T_{n}}{prod} Omega_{t}, quad P_{T_{n}}=underset{t in T_{n}}{prod} P_{t} ΩTn=tTnΩt,PTn=tTnPt
又令 P T − T n P_{T-T_{n}} PTTn Ω T − T n Omega_{T-T_{n}} ΩTTn 上对有限维可测柱集规定的可加集函数, 它满足
P T − T n ( π u 1 ⋯ u n T − T n ) − 1 = ∏ i = 1 n P u i , u 1 ⋯   , u n ∈ T − T n P_{T-T_{n}}left(pi_{u_{1} cdots u_{n}}^{T-T_{n}}right)^{-1}=prod_{i=1}^{n} P_{u_{i}}, quad u_{1} cdots, u_{n} in T-T_{n} PTTn(πu1unTTn)1=i=1nPui,u1,unTTn

由 Fubini 定理,对有限维可测柱集 A = B × Ω T − T k , B ∈ F T k A=B times Omega_{T-T_{k}}, B in mathscr{F}_{T_{k}} A=B×ΩTTk,BFTk T n = { t 1 , ⋯   , t n } ⊂ T k , A ( ω t 1 , ⋯   , ω t n ) T_{n}=left{t_{1}, cdots, t_{n}right} subset T_{k}, Aleft(omega_{t_{1}}, cdots, omega_{t_{n}}right) Tn={t1,,tn}Tk,A(ωt1,,ωtn) 表示 A A A ( ω t 1 , ⋯   , ω t n ) left(omega_{t_{1}}, cdots, omega_{t_{n}}right) (ωt1,,ωtn) 截口。 A ( ω t 1 , ⋯   , ω t n ) Aleft(omega_{t_{1}}, cdots, omega_{t_{n}}right) A(ωt1,,ωtn)表示 A A A 集合里固定 ( ω t 1 , ⋯   , ω t n ) left(omega_{t_{1}}, cdots, omega_{t_{n}}right) (ωt1,,ωtn) 的那些元素。

P T k = P T k − T n × P T n P_{T_{k}}=P_{T_{k}-T_{n}} times P_{T_{n}} PTk=PTkTn×PTn 都是有限维乘积空间上的测度,所以
P T k ( B ) = ∬ I B d P T k − T n d P T n = ∫ P T k − T n ( B ( ω t 1 , ⋯   , ω t n ) ) d P T n P_{T_{k}}(B)=iint I_{B} mathrm{d} P_{T_{k}-T_{n}} mathrm{d} P_{T_{n}} \ =int P_{T_{k}-T_{n}}left(Bleft(omega_{t_{1}}, cdots, omega_{t_{n}}right)right) mathrm{d} P_{T_{n}} PTk(B)=IBdPTkTndPTn=PTkTn(B(ωt1,,ωtn))dPTn
由于
( π T k − T n T ) − 1 B ( ω t 1 , ⋯   , ω t n ) = A ( ω t 1 , ⋯   , ω t n ) left(pi_{T_{k}-T_{n}}^{T}right)^{-1}Bleft(omega_{t_{1}}, cdots, omega_{t_{n}}right)=Aleft(omega_{t_{1}}, cdots, omega_{t_{n}}right) (πTkTnT)1B(ωt1,,ωtn)=A(ωt1,,ωtn)
所以
P ( A ) = P ( ( π T k T ) − 1 B ) = P T k ( B ) = ∫ P T − T n ( A ( ω t 1 , ⋯   , ω t n ) ) d P T n begin{aligned} P(A) &=Pleft(left(pi_{T_{k}}^{T}right)^{-1} Bright)=P_{T_{k}}(B) & \ &=int P_{T-T_{n}}left(Aleft(omega_{t_{1}}, cdots, omega_{t_{n}}right)right) mathrm{d} P_{T_{n}} end{aligned} P(A)=P((πTkT)1B)=PTk(B)=PTTn(A(ωt1,,ωtn))dPTn

下面用反证法来证明
lim ⁡ n → ∞ P ( A n ) = 0 lim _{n rightarrow infty} Pleft(A_{n}right)=0 nlimP(An)=0

若对某递减序列 { A n } left{A_{n}right} {An} 不成立,则有某个 ε > 0 varepsilon>0 ε>0 对每个 n n n P ( A n ) ≥ ε Pleft(A_{n}right) geq varepsilon P(An)ε

由于 A n A_{n} An 都是有限维柱集, 因此不妨设有 T T T 的可列子集 { t n , n ≥ 1 } left{t_{n}, n geq 1right} {tn,n1} 使每个 A n A_{n} An 都是基底在 F t 1 ⋯ t n mathscr{F}_{t_{1} cdots t_{n}} Ft1tn 的有限维柱集。(可数个可数集合的并是可数的,如果 A n A_{n} An 的基底不够则用 Ω t n Omega_{t_{n}} Ωtn 代替)。

对于柱集列 { A n } left{A_{n}right} {An} 做简单调整后, 我们总可以选取参数列 { t 1 ⋯ t n } ⊂ T left{t_{1} cdots t_{n}right} subset T {t1tn}T,设柱集 A n A_{n} An 的基底是 { t 1 ⋯ t n } left{t_{1} cdots t_{n}right} {t1tn},由于 { A n } left{A_{n}right} {An} 是递减的,那么柱集 A n + 1 A_{n+1} An+1 的基底包含 { t 1 ⋯ t n } left{t_{1} cdots t_{n}right} {t1tn}。由此我们可以得到一个递增的基底序列: { t 1 ⋯ t n } ⊂ { t 1 ⋯ t n , ⋯ t s } ⊂ ⋯ left{t_{1} cdots t_{n}right}subset left{t_{1} cdots t_{n}, cdots t_sright} subset cdots {t1tn}{t1tn,ts}。规定 { A n } left{A_{n}right} {An} 的基底都在 T T T 上,用这些有限的基底分别作用上去:


B n = { ( ω t 1 … ω t n 1 ) : P T − { t 1 ⋯ t n 1 } ( A n ( ω t 1 … ω t n 1 ) ) ≥ ε / 2 } B_{n}=left{left(omega_{t_{1}}dotsomega_{t_{n_1 }}right): P_{T-left{t_{1} cdots t_{n_1}right}}left(A_{n}left(omega_{t_{1}}dotsomega_{t_{n_1}}right)right) geq varepsilon / 2right} Bn={(ωt1ωtn1):PT{t1tn1}(An(ωt1ωtn1))ε/2}

代入上面Fubini定理得到的公式:
ε ≤ P ( A n ) = ∫ P T − { t 1 ⋯ t n 1 } ( A ( ω t 1 , ⋯   , ω t n 1 ) ) d P { t 1 ⋯ t n 1 } = ∫ B n P T − { t 1 ⋯ t n 1 } ( A ( ω t 1 , ⋯   , ω t n 1 ) ) d P { t 1 ⋯ t n 1 } + ∫ B n c P T − { t 1 ⋯ t n 1 } ( A ( ω t 1 , ⋯   , ω t n 1 ) ) d P { t 1 ⋯ t n 1 } ≤ P { t 1 ⋯ t n 1 } ( B n ) + ε / 2 begin{aligned} varepsilon leq P(A_n) &=int P_{T-left{t_{1} cdots t_{n_1}right}}left(Aleft(omega_{t_{1}}, cdots, omega_{t_{n_1}}right)right) mathrm{d} P_{left{t_{1} cdots t_{n_1}right}}\ &=int_{B_{n}}P_{T-left{t_{1} cdots t_{n_1}right}}left(Aleft(omega_{t_{1}}, cdots, omega_{t_{n_1}}right)right) mathrm{d} P_{left{t_{1} cdots t_{n_1}right}}+int_{B_{n}^{c}} P_{T-left{t_{1} cdots t_{n_1}right}}left(Aleft(omega_{t_{1}}, cdots, omega_{t_{n_1}}right)right) mathrm{d} P_{left{t_{1} cdots t_{n_1}right}} \&leq P_{left{t_{1} cdots t_{n_1}right}}left(B_{n}right)+varepsilon / 2 end{aligned} εP(An)=PT{t1tn1}(A(ωt1,,ωtn1))dP{t1tn1}=BnPT{t1tn1}(A(ωt1,,ωtn1))dP{t1tn1}+BncPT{t1tn1}(A(ωt1,,ωtn1))dP{t1tn1}P{t1tn1}(Bn)+ε/2
(把概率放大成1)

P { t 1 ⋯ t n 1 } ( B n ) ≥ ε / 2 P_{left{t_{1} cdots t_{n_1}right}}left(B_{n}right) geq varepsilon / 2 P{t1tn1}(Bn)ε/2。 又由于 { B n } left{B_{n}right} {Bn} F { t 1 ⋯ t n 1 } mathscr{F}_{left{t_{1} cdots t_{n_1}right}} F{t1tn1} 中递减序列( A n A_{n} An 递减),因而由 P { t 1 ⋯ t n 1 } P_{left{t_{1} cdots t_{n_1}right}} P{t1tn1} ( Ω { t 1 ⋯ t n 1 } , F { t 1 ⋯ t n 1 } ) left(Omega_{left{t_{1} cdots t_{n_1}right}}, mathscr{F}_{left{t_{1} cdots t_{n_1}right}}right) (Ω{t1tn1},F{t1tn1}) 上的概率可知,必存在 ω ˉ { t 1 ⋯ t n 1 } ∈ ⋂ n B n bar{omega}_{{left{t_{1} cdots t_{n_1}right}}} in bigcap_{n} B_{n} ωˉ{t1tn1}nBn 这时
P T − { t 1 ⋯ t n 1 } ( A n ( ω ˉ t 1 … ω ˉ t n 1 ) ) ≥ ε / 2 , n ≥ 1 P_{T-{left{t_{1} cdots t_{n_1}right}}}left(A_{n}left(bar{omega}_{t_{1}}dots bar{omega}_{t_{n_1}}right)right) geq varepsilon / 2, quad n geq 1 PT{t1tn1}(An(ωˉt1ωˉtn1))ε/2,n1

把刚才用于 Ω T , A n , ε Omega_{T}, A_{n}, varepsilon ΩT,An,ε 的论证, 现在用于 Ω T − { t 1 ⋯ t n 1 } , A n ( ω ˉ t 1 … ω ˉ t n 1 ) , ε / 2 , Omega_{T-left{t_{1}cdots t_{n_1}right}}, A_{n}left(bar{omega}_{t_{1}}dots bar{omega}_{t_{n_1}}right), varepsilon / 2, ΩT{t1tn1},An(ωˉt1ωˉtn1),ε/2, 可得 ω ˉ t n 1 + 1 ⋯ t n 2 bar{omega}_{t_{n_1+1}cdots t_{n_2}} ωˉtn1+1tn2 满足:
P T − { t 1 ⋯ t n 1 ⋯ t n 2 } ( A n ( ω ˉ t 1 ⋯ t n 1 , ω ˉ t n 1 + 1 ⋯ t n 2 ) ) ≥ ε / 4 , n ≥ 1 P_{T-left{t_{1}cdots t_{n_1}cdots t_{n_2}right}}left(A_{n}left(bar{omega}_{t_{1}cdots t_{n_1}}, bar{omega}_{t_{n_1+1}cdots t_{n_2}}right)right) geq varepsilon / 4, quad n geq 1 PT{t1tn1tn2}(An(ωˉt1tn1,ωˉtn1+1tn2))ε/4,n1

继续这一过程可得

P T − T j ( A n ( ω ^ 1 , ⋯   , ω ^ j ) ) ≥ ε / 2 j , n ≥ 1 , j ≥ 1 P_{T-T_j}left(A_{n}left(hat{omega}_{1}, cdots, hat{omega}_{j}right)right) geq varepsilon / 2^{j}, quad n geq 1, quad j geq 1 PTTj(An(ω^1,,ω^j))ε/2j,n1,j1
这里: T j = { t 1 ⋯ t n 1 ⋯ t n j } , ω ^ j = ω ˉ t n j − 1 + 1 ⋯ t n j T_j={t_1cdots t_{n_1}cdots t_{n_j}}, hat{omega}_{j}=bar{omega}_{t_{n_{j-1}+1}cdots t_{n_j}} Tj={t1tn1tnj},ω^j=ωˉtnj1+1tnj

构造 ω ˉ = ( ω t , t ∈ T ) bar{omega}=left(omega_{t}, t in Tright) ωˉ=(ωt,tT),如果 t ∉ T j , j ≥ 1 t notin T_{j}, j geq 1 t/Tj,j1,分量在 Ω t Omega_{t} Ωt 任取,如果 t ∈ T j , ∃ j ≥ 1 t in T_{j}, exist j geq 1 tTj,j1,那么分量取 ω ^ j hat{omega}_j ω^j

接着将证明
ω ˉ ∈ ⋂ n = 1 ∞ A n bar{omega}in bigcap_{n=1}^{infty} A_{n} ωˉn=1An

由递减性, A 1 A_{1} A1 是基底在 F T 1 mathscr{F}_{T_{1}} FT1 的柱集, P T − T 1 ( A 1 ( ω ^ 1 ) ) ≥ ε / 2 P_{T-T_{1}}left(A_{1}left(hat{omega}_{1}right)right) geq varepsilon / 2 PTT1(A1(ω^1))ε/2。故 A 1 ( ω ^ 1 ) A_{1}left(hat{omega}_{1}right) A1(ω^1)非空, ω ˉ ∈ A 1 bar{omega} in A_{1} ωˉA1。 同理
P T − T j ( A j ( w ^ 1 , ⋯   , ω ^ j ) ) ≥ ε / 2 j P_{T-T_j}left(A_{j}left(hat{w}_{1}, cdots, hat{omega}_{j}right)right) geq varepsilon / 2^{j} PTTj(Aj(w^1,,ω^j))ε/2j
A j ( ω ^ 1 , ⋯   , ω ^ j ) A_{j}left(hat{omega}_{1}, cdots, hat{omega}_{j}right) Aj(ω^1,,ω^j) 非空( A j A_j Aj 是柱集,它的一个截口非空 )。所以有 ω ˉ ∈ A j bar{omega} in A_{j} ωˉAj 。这和 A n A_n An 递减到空集矛盾。

最后

以上就是欣慰白猫为你收集整理的无限维乘积空间(彼此独立)的测度(完)的全部内容,希望文章能够帮你解决无限维乘积空间(彼此独立)的测度(完)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部