无限维乘积空间(彼此独立)的测度(完)
设 T={t:t∈T}T=\{t: t \in T\}T={t:t∈T} 为任意指标集, {(Ωt,Ft):t∈T}\left\{\left(\Omega_{t}, \mathscr{F}_{t}\right): t \in T\right\}{(Ωt,Ft):t∈T} 为一族可测空间,Ω=∏t∈TΩt,F=∏t∈TFt\Omega=\underset{t \in T}{\prod} \Omega_{t}, \quad \mathscr{F}=\underset{t \in T}{\prod