概述
1.代码
import time
import torch
from torch import nn,optim
import torchvision
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1,96,11,4),
nn.ReLU(),
nn.MaxPool2d(3,2),
nn.Conv2d(96,256,5,1,2),
nn.ReLU(),
nn.MaxPool2d(3,2),
nn.Conv2d(256,384,3,1,1),
nn.ReLU(),
nn.Conv2d(384,384,3,1,1),
nn.ReLU(),
nn.Conv2d(384,256,3,1,1),
nn.ReLU(),
nn.MaxPool2d(3,2)
)
self.fc = nn.Sequential(
nn.Linear(256*5*5,4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096,4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096,10),
)
def forward(self,img):
feature = self.conv(img)
output = self.fc(feature.view(img.shape[0],-1))
return output
net = AlexNet()
def load_data_fashion_mnist(batch_size,resize=None,root='~/Datasets/FashionMNIST'):
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size=resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=root,train=True,download=True,transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root=root,train=False,download=True,transform=transform)
train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=4)
test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size,shuffle=False,num_workers=4)
return train_iter,test_iter
batch_size = 128
train_iter,test_iter = load_data_fashion_mnist(batch_size,resize=224)
def evaluate_accuracy(data_iter,net,device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')):
acc_sum,n = 0.0,0
with torch.no_grad():
for X,y in data_iter:
if isinstance(net,torch.nn.Module):
net.eval()
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
net.train()
else:
if('is_training' in net.__code__.co_varnames):
acc_sum += (net(X,is_training=False).argmax(dim=1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum/n
def train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs):
net = net.to(device)
print("training on ",device)
loss = torch.nn.CrossEntropyLoss()
batch_count = 0
for epoch in range(num_epochs):
train_l_sum,train_acc_sum,n,start = 0.0,0.0,0,time.time()
for X,y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat,y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter,net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' %(epoch+1,train_l_sum/batch_count,train_acc_sum/n,test_acc,time.time()-start))
lr,num_epochs = 0.001,5
optimizer = torch.optim.Adam(net.parameters(),lr=lr)
train_ch5(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs)
2.结果
最后
以上就是直率烤鸡为你收集整理的Pytorch学习笔记——AlexNet模型的全部内容,希望文章能够帮你解决Pytorch学习笔记——AlexNet模型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复