我是靠谱客的博主 想人陪路灯,最近开发中收集的这篇文章主要介绍Pytorch:BatchNorm1d、BatchNorm2d、BatchNorm3d日萌社,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
日萌社
人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)
1.nn.BatchNorm1d(num_features)
1.对小批量(mini-batch)的2d或3d输入进行批标准化(Batch Normalization)操作
2.num_features:
来自期望输入的特征数,该期望输入的大小为'batch_size x num_features [x width]'
意思即输入大小的形状可以是'batch_size x num_features' 和 'batch_size x num_features x width' 都可以。
(输入输出相同)
输入Shape:(N, C)或者(N, C, L)
输出Shape:(N, C)或者(N,C,L)
eps:为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
momentum:动态均值和动态方差所使用的动量。默认为0.1。
affine:一个布尔值,当设为true,给该层添加可学习的仿射变换参数。
3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
在验证时,训练求得的均值/方差将用于标准化验证数据。
4.例子
>>> # With Learnable Parameters
>>> m = nn.BatchNorm1d(100) #num_features指的是randn(20, 100)中(N, C)的第二维C
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm1d(100, affine=False)
>>> input = autograd.Variable(torch.randn(20, 100)) #输入Shape:(N, C)
>>> output = m(input) #输出Shape:(N, C)
2.nn.BatchNorm2d(num_features)
1.对小批量(mini-batch)3d数据组成的4d输入进行批标准化(Batch Normalization)操作
2.num_features:
来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'
(输入输出相同)
输入Shape:(N, C,H, W)
输出Shape:(N, C, H, W)
eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
momentum: 动态均值和动态方差所使用的动量。默认为0.1。
affine: 一个布尔值,当设为true,给该层添加可学习的仿射变换参数。
3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
在验证时,训练求得的均值/方差将用于标准化验证数据。
4.例子
>>> # With Learnable Parameters
>>> m = nn.BatchNorm2d(100) #num_features指的是randn(20, 100, 35, 45)中(N, C,H, W)的第二维C
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm2d(100, affine=False)
>>> input = autograd.Variable(torch.randn(20, 100, 35, 45)) #输入Shape:(N, C,H, W)
>>> output = m(input)
3.nn.BatchNorm3d(num_features)
1.对小批量(mini-batch)4d数据组成的5d输入进行批标准化(Batch Normalization)操作
2.num_features:
来自期望输入的特征数,该期望输入的大小为'batch_size x num_features depth x height x width'
(输入输出相同)
输入Shape:(N, C,D, H, W)
输出Shape:(N, C, D, H, W)
eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
momentum: 动态均值和动态方差所使用的动量。默认为0.1。
affine: 一个布尔值,当设为true,给该层添加可学习的仿射变换参数。
3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
在验证时,训练求得的均值/方差将用于标准化验证数据。
4.例子
>>> # With Learnable Parameters
>>> m = nn.BatchNorm3d(100) #num_features指的是randn(20, 100, 35, 45, 10)中(N, C, D, H, W)的第二维C
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm3d(100, affine=False) #num_features指的是randn(20, 100, 35, 45, 10)中(N, C, D, H, W)的第二维C
>>> input = autograd.Variable(torch.randn(20, 100, 35, 45, 10)) #输入Shape:(N, C, D, H, W)
>>> output = m(input)
最后
以上就是想人陪路灯为你收集整理的Pytorch:BatchNorm1d、BatchNorm2d、BatchNorm3d日萌社的全部内容,希望文章能够帮你解决Pytorch:BatchNorm1d、BatchNorm2d、BatchNorm3d日萌社所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复