概述
串口这个东西很重要,罗里吧嗦的就不说了
参考资料:IMX6U参考手册,正点原子嵌入式linux驱动开发指南
1.UART简介
UART作为串口的一种,工作原理就是数据一位一位的进行传输,发送和接收各用一条线,因为UART接口与外界相连最少需要三个线:TXD、RXD、GND。UART的通信格式如下:
空闲位: 数据线在空闲状态的时候为逻辑"1"状态,表示没有数据线空闲,没有数据传输。
起始位: 当要传输数据的时候先传输一个逻辑0,也就是将数据线拉低,表示开始数据传输。
数据位: 数据位就是实际要传输的数据,数据位数可选择5~8,一般按照字节传输数据,一个字节 8 位,因此数据位通常是 8 位的。低位在前,先传输,高位最后传输。
奇偶校验位: 这是对数据中“1”的位数进行奇偶校验用的,可以不使用奇偶校验功能。
停止位: 数据传输完成标志位,停止位的位数可以选择 1 位、 1.5 位或 2 位高电平,一般都
选择 1 位停止位。
I.MX6U 一共有 8 个 UART,其主要特性如下:
①、兼容 TIA/EIA-232F 标准,速度最高可到 5Mbit/S。
②、支持串行 IR 接口,兼容 IrDA,最高可到 115.2Kbit/s。
③、支持 9 位或者多节点模式(RS-485)。
④、 1 或 2 位停止位。
⑥、可编程的奇偶校验(奇校验和偶校验)。
⑦、自动波特率检测(最高支持 115.2Kbit/S)。
UART的时钟源是由寄存器CCM_CSCDR1的UART_CLK_SEL位确定的,当为0的时候UART的时钟源为pll3_80m(80MHz),如果为 1 的时候 UART 的时钟源为 osc_clk(24M),一般选择 pll3_80m 作为 UART 的时钟源。寄存器 CCM_CSCDR1 的 UART_CLK_PODF(bit5:0)位是 UART 的时钟分频值,可设置 0~63,分别对应 1~64 分频,一般设置为 1 分频,因此最终进入 UART 的时钟为 80MHz
2.和UART相关的寄存器
- UARTx_UCR1(x=1~8)
- UARTx_UCR2
- UARTx_UCR3
- UARTx_USR2
- UARTx_UFCR
- UARTx_UBIR
- UARTx_UBMR
- UARTx_URXD
- UARTx_UTXD
UARTx_UCR1
寄存器 UARTx_UCR1 我们用到的重要位如下:
**ADBR(bit14):**自动波特率检测使能位,为 0 的时候关闭自动波特率检测,为 1 的时候使
能自动波特率检测。
** UARTEN(bit0): ** UART 使能位,为 0 的时候关闭 UART,为 1 的时候使能 UART
UARTx_UCR2
寄存器 UARTx_UCR2 用到的重要位如下:
IRTS(bit14): 为 0 的时候使用 RTS 引脚功能,为 1 的时候忽略 RTS 引脚。
PREN(bit8): 奇偶校验使能位,为 0 的时候关闭奇偶校验,为 1 的时候使能奇偶校验。
PROE(bit7): 奇偶校验模式选择位,开启奇偶校验以后此位如果为 0 的话就使用偶校验,此位为 1 的话就使能奇校验。
STOP(bit6): 停止位数量,为 0 的话 1 位停止位,为 1 的话 2 位停止位。
WS(bit5): 数据位长度,为 0 的时候选择 7 位数据位,为 1 的时候选择 8 位数据位。
TXEN(bit2): 发送使能位,为 0 的时候关闭 UART 的发送功能,为 1 的时候打开 UART的发送功能。
RXEN(bit1): 接收使能位,为 0 的时候关闭 UART 的接收功能,为 1 的时候打开 UART的接收功能。
SRST(bit0): 软件复位,为 0 的是时候软件复位 UART,为 1 的时候表示复位完成。复位完成以后此位会自动置 1, 表示复位完成。此位只能写 0,写 1 会被忽略掉。
UARTx_UCR3
RXDMUXSEL(bit2): 始终为1
UARTx_USR2
寄存器 UARTx_USR2 用到的重要位如下:
**TXDC(bit3):**发送完成标志位,为 1 的时候表明发送缓冲(TxFIFO)和移位寄存器为空,也就是发送完成,向 TxFIFO 写入数据此位就会自动清零。
**RDR(bit0):**数据接收标志位,为 1 的时候表明至少接收到一个数据,从寄存器UARTx_URXD 读取数据接收到的数据以后此为会自动清零。
UARTx_UFCR 、 UARTx_UBIR 和 UARTx_UBMR
UARTx_UFCR 中我们要用到的是位 RFDIV(bit9:7),用来设置参考时钟分频
这三个寄存器设置UART的波特率,波特率的计算公式如下:
Ref Freq: 经过分频以后进入 UART 的最终时钟频率。
UBMR: 寄存器 UARTx_UBMR 中的值。
UBIR: 寄存器 UARTx_UBIR 中的值。
比如现在要设置 UART 波特率为 115200,那么可以设置 RFDIV 为5(0b101),也就是 1 分频,因此 Ref Freq=80MHz。设置 UBIR=71, UBMR=3124,根据上面的公式可以得到:
UARTx_URXD 和 UARTx_UTXD
UARTx_URXD 和 UARTx_UTXD,这两个寄存器分别为 UART 的接收和发送数据寄存器,这两个寄存器的低八位为接收到的和要发送的数据。读取寄存器UARTx_URXD 即可获取到接收到的数据,如果要通过 UART 发送数据,直接将数据写入到寄存器 UARTx_UTXD 即可。
3.UART1 的配置
1、设置 UART1 的时钟源
设置 UART 的时钟源为 pll3_80m,设置寄存器 CCM_CSCDR1 的 UART_CLK_SEL 位为 0即可。
2、初始化 UART1
初始化 UART1 所使用 IO,设置 UART1 的寄存器 UART1_UCR1~UART1_UCR3,设置内容包括波特率,奇偶校验、停止位、数据位等等。
3、使能 UART1
UART1 初始化完成以后就可以使能 UART1 了,设置寄存器 UART1_UCR1 的位 UARTEN为 1。
4、编写 UART1 数据收发函数
编写两个函数用于 UART1 的数据收发操作
下面是相关的函数
/*
* @description : 初始化串口1,波特率为115200
* @param : 无
* @return : 无
*/
void uart_init(void)
{
/* 1、初始化串口IO */
uart_io_init();
/* 2、初始化UART1 */
uart_disable(UART1); /* 先关闭UART1 */
uart_softreset(UART1); /* 软件复位UART1 */
UART1->UCR1 = 0; /* 先清除UCR1寄存器 */
/*
* 设置UART的UCR1寄存器,关闭自动波特率
* bit14: 0 关闭自动波特率检测,我们自己设置波特率
*/
UART1->UCR1 &= ~(1<<14);
/*
* 设置UART的UCR2寄存器,设置内容包括字长,停止位,校验模式,关闭RTS硬件流控
* bit14: 1 忽略RTS引脚
* bit8: 0 关闭奇偶校验
* bit6: 0 1位停止位
* bit5: 1 8位数据位
* bit2: 1 打开发送
* bit1: 1 打开接收
*/
UART1->UCR2 |= (1<<14) | (1<<5) | (1<<2) | (1<<1);
/*
* UART1的UCR3寄存器
* bit2: 1 必须设置为1!参考IMX6ULL参考手册3624页
*/
UART1->UCR3 |= 1<<2;
/*
* 设置波特率
* 波特率计算公式:Baud Rate = Ref Freq / (16 * (UBMR + 1)/(UBIR+1))
* 如果要设置波特率为115200,那么可以使用如下参数:
* Ref Freq = 80M 也就是寄存器UFCR的bit9:7=101, 表示1分频
* UBMR = 3124
* UBIR = 71
* 因此波特率= 80000000/(16 * (3124+1)/(71+1))=80000000/(16 * 3125/72) = (80000000*72) / (16*3125) = 115200
*/
UART1->UFCR = 5<<7; //ref freq等于ipg_clk/1=80Mhz
UART1->UBIR = 71;
UART1->UBMR = 3124;
#if 0
uart_setbaudrate(UART1, 115200, 80000000); /* 设置波特率 */
#endif
/* 使能串口 */
uart_enable(UART1);
}
/*
* @description : 初始化串口1所使用的IO引脚
* @param : 无
* @return : 无
*/
void uart_io_init(void)
{
/* 1、初始化IO复用
* UART1_RXD -> UART1_TX_DATA
* UART1_TXD -> UART1_RX_DATA
*/
IOMUXC_SetPinMux(IOMUXC_UART1_TX_DATA_UART1_TX,0); /* 复用为UART1_TX */
IOMUXC_SetPinMux(IOMUXC_UART1_RX_DATA_UART1_RX,0); /* 复用为UART1_RX */
/* 2、配置UART1_TX_DATA、UART1_RX_DATA的IO属性
*bit 16:0 HYS关闭
*bit [15:14]: 00 默认100K下拉
*bit [13]: 0 keeper功能
*bit [12]: 1 pull/keeper使能
*bit [11]: 0 关闭开路输出
*bit [7:6]: 10 速度100Mhz
*bit [5:3]: 110 驱动能力R0/6
*bit [0]: 0 低转换率
*/
IOMUXC_SetPinConfig(IOMUXC_UART1_TX_DATA_UART1_TX,0x10B0);
IOMUXC_SetPinConfig(IOMUXC_UART1_RX_DATA_UART1_RX,0x10B0);
}
/*
* @description : 波特率计算公式,
* 可以用此函数计算出指定串口对应的UFCR,
* UBIR和UBMR这三个寄存器的值
* @param - base : 要计算的串口。
* @param - baudrate : 要使用的波特率。
* @param - srcclock_hz :串口时钟源频率,单位Hz
* @return : 无
*/
void uart_setbaudrate(UART_Type *base, unsigned int baudrate, unsigned int srcclock_hz)
{
uint32_t numerator = 0u; //分子
uint32_t denominator = 0U; //分母
uint32_t divisor = 0U;
uint32_t refFreqDiv = 0U;
uint32_t divider = 1U;
uint64_t baudDiff = 0U;
uint64_t tempNumerator = 0U;
uint32_t tempDenominator = 0u;
/* get the approximately maximum divisor */
numerator = srcclock_hz;
denominator = baudrate << 4;
divisor = 1;
while (denominator != 0)
{
divisor = denominator;
denominator = numerator % denominator;
numerator = divisor;
}
numerator = srcclock_hz / divisor;
denominator = (baudrate << 4) / divisor;
/* numerator ranges from 1 ~ 7 * 64k */
/* denominator ranges from 1 ~ 64k */
if ((numerator > (UART_UBIR_INC_MASK * 7)) || (denominator > UART_UBIR_INC_MASK))
{
uint32_t m = (numerator - 1) / (UART_UBIR_INC_MASK * 7) + 1;
uint32_t n = (denominator - 1) / UART_UBIR_INC_MASK + 1;
uint32_t max = m > n ? m : n;
numerator /= max;
denominator /= max;
if (0 == numerator)
{
numerator = 1;
}
if (0 == denominator)
{
denominator = 1;
}
}
divider = (numerator - 1) / UART_UBIR_INC_MASK + 1;
switch (divider)
{
case 1:
refFreqDiv = 0x05;
break;
case 2:
refFreqDiv = 0x04;
break;
case 3:
refFreqDiv = 0x03;
break;
case 4:
refFreqDiv = 0x02;
break;
case 5:
refFreqDiv = 0x01;
break;
case 6:
refFreqDiv = 0x00;
break;
case 7:
refFreqDiv = 0x06;
break;
default:
refFreqDiv = 0x05;
break;
}
/* Compare the difference between baudRate_Bps and calculated baud rate.
* Baud Rate = Ref Freq / (16 * (UBMR + 1)/(UBIR+1)).
* baudDiff = (srcClock_Hz/divider)/( 16 * ((numerator / divider)/ denominator).
*/
tempNumerator = srcclock_hz;
tempDenominator = (numerator << 4);
divisor = 1;
/* get the approximately maximum divisor */
while (tempDenominator != 0)
{
divisor = tempDenominator;
tempDenominator = tempNumerator % tempDenominator;
tempNumerator = divisor;
}
tempNumerator = srcclock_hz / divisor;
tempDenominator = (numerator << 4) / divisor;
baudDiff = (tempNumerator * denominator) / tempDenominator;
baudDiff = (baudDiff >= baudrate) ? (baudDiff - baudrate) : (baudrate - baudDiff);
if (baudDiff < (baudrate / 100) * 3)
{
base->UFCR &= ~UART_UFCR_RFDIV_MASK;
base->UFCR |= UART_UFCR_RFDIV(refFreqDiv);
base->UBIR = UART_UBIR_INC(denominator - 1); //要先写UBIR寄存器,然后在写UBMR寄存器,3592页
base->UBMR = UART_UBMR_MOD(numerator / divider - 1);
}
}
/*
* @description : 关闭指定的UART
* @param - base: 要关闭的UART
* @return : 无
*/
void uart_disable(UART_Type *base)
{
base->UCR1 &= ~(1<<0);
}
/*
* @description : 打开指定的UART
* @param - base: 要打开的UART
* @return : 无
*/
void uart_enable(UART_Type *base)
{
base->UCR1 |= (1<<0);
}
/*
* @description : 复位指定的UART
* @param - base: 要复位的UART
* @return : 无
*/
void uart_softreset(UART_Type *base)
{
base->UCR2 &= ~(1<<0); /* UCR2的bit0为0,复位UART */
while((base->UCR2 & 0x1) == 0); /* 等待复位完成 */
}
/*
* @description : 发送一个字符
* @param - c : 要发送的字符
* @return : 无
*/
void putc(unsigned char c)
{
while(((UART1->USR2 >> 3) &0X01) == 0);/* 等待上一次发送完成 */
UART1->UTXD = c & 0XFF; /* 发送数据 */
}
/*
* @description : 发送一个字符串
* @param - str : 要发送的字符串
* @return : 无
*/
void puts(char *str)
{
char *p = str;
while(*p)
putc(*p++);
}
/*
* @description : 接收一个字符
* @param : 无
* @return : 接收到的字符
*/
unsigned char getc(void)
{
while((UART1->USR2 & 0x1) == 0);/* 等待接收完成 */
return UART1->URXD; /* 返回接收到的数据 */
}
/*
* @description : 防止编译器报错
* @param : 无
* @return : 无
*/
void raise(int sig_nr)
{
}
最后
以上就是淡定故事为你收集整理的【ARM】IMX6UL串口通信1.UART简介2.和UART相关的寄存器3.UART1 的配置的全部内容,希望文章能够帮你解决【ARM】IMX6UL串口通信1.UART简介2.和UART相关的寄存器3.UART1 的配置所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复