我是靠谱客的博主 苹果溪流,最近开发中收集的这篇文章主要介绍机器学习笔记,使用metrics.classification_report显示精确率,召回率,f1指数,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。
主要参数:
y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值。
y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值。
labels:array,shape = [n_labels],报表中包含的标签索引的可选列表。
target_names:字符串列表,与标签匹配的可选显示名称(相同顺序)。
sample_weight:类似于shape = [n_samples]的数组,可选项,样本权重。
digits:int,输出浮点值的位数.
Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : array, shape = [n_labels] Optional list of label indices to include in the report. target_names : list of strings Optional display names matching the labels (same order). sample_weight : array-like of shape = [n_samples], optional Sample weights. digits : int Number of digits for formatting output floating point values Returns ------- report : string Text summary of the precision, recall, F1 score for each class. The reported averages are a prevalence-weighted macro-average across classes (equivalent to :func:`precision_recall_fscore_support` with ``average='weighted'``). Note that in binary classification, recall of the positive class is also known as "sensitivity"; recall of the negative class is "specificity". Examples -------- >>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support <BLANKLINE> class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 <BLANKLINE> avg / total 0.70 0.60 0.61 5 <BLANKLINE>
参考:
https://www.programcreek.com/python/example/81623/sklearn.metrics.classification_report
https://blog.csdn.net/akadiao/article/details/78788864
最后
以上就是苹果溪流为你收集整理的机器学习笔记,使用metrics.classification_report显示精确率,召回率,f1指数的全部内容,希望文章能够帮你解决机器学习笔记,使用metrics.classification_report显示精确率,召回率,f1指数所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复