我是靠谱客的博主 紧张大侠,最近开发中收集的这篇文章主要介绍数据库其他调优策略--MySQL,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

数据库其他调优策略

1.数据库调优的措施

1.1调优目标
  • 尽可能节省系统资源,以便系统可以提供更大负荷的服务。(吞吐量更大)
  • 合理的结构设计和参数调整,以提高用户操作响应的速度。(响应速度更快)
  • 减少系统的瓶颈,提高MySql数据库整体的性能。
1.2如何定位调优问题

如何确定呢?一般情况下,有如下几种方式:

  • 用户的反馈(主要)
  • 日志分析(主要)
  • 服务器资源使用监控
  • 数据库内部状况监控
  • 其它

除了活动会话监控以外,我们也可以对 事务 、 锁等待 等进行监控,这些都可以帮助我们对数据库的运 行状态有更全面的认识。

1.3调优的维度和步骤

需要调优的对象是整个数据库管理系统,它不仅包括 SQL 查询,还包括数据库的部署配置、架构等。从这个角度来说,我们思考的维度就不仅仅局限在 SQL 优化上了。通过如下的步骤我们进行梳理:

①选择适合的 DBMS

如果对事务性处理以及安全性要求高的话,可以选择商业的数据库产品。这些数据库在事务吃力和查询性能上都比较强,比如采用SQL Server、Oracle,那么单表存储上亿条数据是没问题的。如果数据表设计得好,即使不采用分库分表的方式,查询效率也不差。

除此以外,也可以采用开源的MySQL进行存储,它有很多存储引擎可以选择,如果进行事务处理的话可以选择InnoDB,非事务处理可以选择MyISAM。

②优化表设计
  • 表结构要尽量遵循三范式的原则。这样可以让数据结构更加清晰规范,减少冗余字段,同时也减少了在更新,插入和删除数据时等异常情况的发生。
  • 如果查询应用比较多,尤其是需要进行多表联合查询的时候,可以采用反范式进行优化。反范式采用空间换时间的方式,通过增加冗余字段提高查询的效率。
  • 表字段的数据类型选择,关系到了查询效率的高低以及存储空间的大小。一般来说,如果字段可以采用数值类型就不要采用字符类型;字符类型长度要尽可能涉及得短一些。针对字符类型来说,当确定字符长度固定时,就可以采用CHAR类型;当长度不固定时,通常采用VARCHAR类型。

数据表的结构设计很基础,也很关键。好的表节后可以在业务发展和用户量增加的情况下依然发挥作用,不好的表结构设计会让数据变得非常臃肿,查询效率也会降低。

③优化逻辑查询

当我们建立好数据表之后,就可以对数据表进行增删改查的操作了。这时我们首先需要考虑的是逻辑查询优化。SQL查询优化,可以分为逻辑查询优化和物理查询优化。逻辑查询优化就是通过改变SQL语句的内容让SQL执行效率更高效,采用的方式是对SQL语句进行等价变换,对查询进行重写。

④优化物理查询

SQL的查询重写包括了子查询优化、等价谓词重写、视图重写、条件简化、连接消除和嵌套连接消除等。

物理查询优化是在确定了逻辑查询优化之后,采用物理优化技术(比如索引等),通过计算代价模型对各种可能的访问路径进行估算,从而找到执行方式中代价最小的作为执行计划。在这个部分中,我们需要掌握的重点是对索引的创建和使用

我们需要根据实际情况来创建索引,SQL查询时需要对不同的数据表进行查询,因此在物理查询优化阶段也需要确定这些查询所采用的路径,具体情况包括:

  • 单表查询:对于单表扫描来说,我们可以全表扫描所有的数据,也可以局部扫描。
  • 两张表的链接:常用的连接方式包括了嵌套循环连接、HASH连接和合并连接。
  • 多张表的链接:多张数据表进行连接的时候,顺序很重要,因为不同的连接路径查询的效率不同,搜索空间也会不同。我们在进行多表连接的时候,搜索空间可能会达到很高的数据量级,巨大的搜索空间显然会占用更多的资源,因此我们需要调整连接顺序,将搜索空间调整在一个可接受的范围内。
⑤使用 Redis 或 Memcached 作为缓存

除了可以对 SQL 本身进行优化以外,我们还可以请外援提升查询的效率。

因为数据都是存放到数据库中,我们需要从数据库层中取出数据放到内存中进行业务逻辑的操作,当用户量增大的时候,如果频繁地进行

数据查询,会消耗数据库的很多资源。如果我们将常用的数据直接放到内存中,就会大幅提升查询的效率。

键值存储数据库可以帮我们解决这个问题。

常用的键值存储数据库有 Redis 和 Memcached,它们都可以将数据存放到内存中。

通常我们对于查询响应要求高的场景(响应时间段,吞吐量大),可以考虑内存数据库,毕竟术业有专攻。传统的RDBMS都是将数据存储在硬盘上,而内存数据库则存放在内存中,查询起来要快的多。不过使用不同的工具,也增加了开发人员的使用成本。

⑥库级优化

库级优化是站在数据库的维度上进行的优化策略,比如控制一个库中的数据表数量。另外,单一的数据库总会遇到各种限制,不如取长补短,利用“外援”的方式。通过主从架构优化我们的读写策略,通过对数据库进行垂直或者水平切分,突破单一数据库或数据表的访问限制,提升查询的性能。

6.1读写分离

如果读和写的业务量都很大,并且他们都在同一个数据库服务器中进行操作,那么数据库的性能就会出现瓶颈,这时为了提升系统的性能,优化用户体验,我们可以采用读写分离的方式降低主数据库的负载,比如用主数据库(master)完成写操作,用从数据库(slave)完成读操作。

image-20220228165722314

image-20220228165733877

6.2数据分片

对数据库分库分表。当数量积达到千万级以上时,有时候我们需要把一个数据库切成多份,放到不同的数据库服务器上,减少对单一数据库服务器的访问压力。如果使用的是MySQL,就可以使用MySQL自带的分区表功能,也可以做垂直拆分(分库)、水平拆分(分表)、垂直+水平拆分(分库分表)。

image-20220228165745026

image-20220228165756547

但是需要注意的是,分拆在提升数据库性能的同时,也会增加维护和使用成本。

2.优化MySQL服务器

2.1优化服务器硬件

服务器的硬件性能直接决定着MySQL数据库的性能。硬件的性能瓶颈直接决定MySQL数据库的运行速度 和效率。针对性能瓶颈提高硬件配置,可以提高MySQL数据库查询、更新的速度。

(1) 配置较大的内存。足够大的内存时提高MySQL数据库性能的方法之一。内存的速度比磁盘I/O快的多,可以通过增加系统的缓冲区容量使数据在内存中停留的时间更长,以减少磁盘I/O。

(2) 配置高速磁盘系统。减少读盘的等待时间,提高响应时间。磁盘的I/O能力,也就是寻道能力。

(3) 合理分布磁盘I/O。把磁盘I/O分散在多个设备上,以减少资源竞争,提高并行操作能力。

(4) 配置多处理器。MySQL是多线程的数据库,多处理器可同时执行多个线程。

2.2优化MySQL的参数
  • innodb_buffer_pool_size :这个参数是Mysql数据库最重要的参数之一,表示InnoDB类型的 表 和索引的最大缓存 。它不仅仅缓存 索引数据 ,还会缓存 表的数据 。这个值越大,查询的速度就会越 快。但是这个值太大会影响操作系统的性能。

  • key_buffer_size :表示 索引缓冲区的大小 。索引缓冲区是所有的 线程共享 。增加索引缓冲区可 以得到更好处理的索引(对所有读和多重写)。当然,这个值不是越大越好,它的大小取决于内存 的大小。如果这个值太大,就会导致操作系统频繁换页,也会降低系统性能。对于内存在 4GB 左右 的服务器该参数可设置为 256M 或 384M 。

  • table_cache :表示 同时打开的表的个数 。这个值越大,能够同时打开的表的个数越多。物理内 存越大,设置就越大。默认为2402,调到512-1024最佳。这个值不是越大越好,因为同时打开的表 太多会影响操作系统的性能。

  • query_cache_size :表示 查询缓冲区的大小 。可以通过在MySQL控制台观察,如果 Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的情况,就要增加Query_cache_size 的值;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效 率,那么可以考虑不用查询缓存;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很 多。MySQL8.0之后失效。该参数需要和query_cache_type配合使用。

  • query_cache_type 的值是0时,所有的查询都不使用查询缓存区。但是query_cache_type=0并不 会导致MySQL释放query_cache_size所配置的缓存区内存。

    • 当query_cache_type=1时,所有的查询都将使用查询缓存区,除非在查询语句中指定 SQL_NO_CACHE ,如SELECT SQL_NO_CACHE * FROM tbl_name。
    • 当query_cache_type=2时,只有在查询语句中使用 SQL_CACHE 关键字,查询才会使用查询缓 存区。使用查询缓存区可以提高查询的速度,这种方式只适用于修改操作少且经常执行相同的 查询操作的情况。
  • sort_buffer_size :表示每个 需要进行排序的线程分配的缓冲区的大小 。增加这个参数的值可以 提高 ORDER BY 或 GROUP BY 操作的速度。默认数值是2 097 144字节(约2MB)。对于内存在4GB 左右的服务器推荐设置为6-8M,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。

  • join_buffer_size = 8M :表示 联合查询操作所能使用的缓冲区大小 ,和sort_buffer_size一样, 该参数对应的分配内存也是每个连接

    独享。

  • read_buffer_size :表示 每个线程连续扫描时为扫描的每个表分配的缓冲区的大小(字节) 。当线 程从表中连续读取记录时需要用

    到这个缓冲区。SET SESSION read_buffer_size=n可以临时设置该参 数的值。默认为64K,可以设置为4M。

  • innodb_flush_log_at_trx_commit :表示 何时将缓冲区的数据写入日志文件 ,并且将日志文件 写入磁盘中。该参数对于innoDB引擎非常重要。该参数有3个值,分别为0、1和2。该参数的默认值 为1。

    • 值为 0 时,表示 每秒1次 的频率将数据写入日志文件并将日志文件写入磁盘。每个事务的 commit并不会触发前面的任何操作。该模式速度最快,但不太安全,mysqld进程的崩溃会导 致上一秒钟所有事务数据的丢失。
    • 值为 1 时,表示 每次提交事务时 将数据写入日志文件并将日志文件写入磁盘进行同步。该模 式是最安全的,但也是最慢的一种方式。因为每次事务提交或事务外的指令都需要把日志写入 (flush)硬盘。
    • 值为 2 时,表示 每次提交事务时 将数据写入日志文件, 每隔1秒 将日志文件写入磁盘。该模 式速度较快,也比0安全,只有在操作系统崩溃或者系统断电的情况下,上一秒钟所有事务数 据才可能丢失。
  • innodb_log_buffer_size :这是 InnoDB 存储引擎的 事务日志所使用的缓冲区 。为了提高性能, 也是先将信息写入 Innodb Log Buffer 中,当满足 innodb_flush_log_trx_commit 参数所设置的相应条 件(或者日志缓冲区写满)之后,才会将日志写到文件(或者同步到磁盘)中。

  • max_connections :表示 允许连接到MySQL数据库的最大数量 ,默认值是 151 。如果状态变量 connection_errors_max_connections 不为零,并且一直增长,则说明不断有连接请求因数据库连接 数已达到允许最大值而失败,这是可以考虑增大max_connections 的值。在Linux 平台下,性能好的 服务器,支持 500-1000 个连接不是难事,需要根据服务器性能进行评估设定。这个连接数 不是越大 越好 ,因为这些连接会浪费内存的资源。过多的连接可能会导致MySQL服务器僵死。

  • back_log :用于 控制MySQL监听TCP端口时设置的积压请求栈大小 。如果MySql的连接数达到 max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即 back_log,如果等待连接的数量超过back_log,将不被授予连接资源,将会报错。5.6.6 版本之前默 认值为 50 , 之后的版本默认为 50 + (max_connections / 5), 对于Linux系统推荐设置为小于512 的整数,但最大不超过900。如果需要数据库在较短的时间内处理大量连接请求, 可以考虑适当增大back_log 的值。

  • thread_cache_size : 线程池缓存线程数量的大小 ,当客户端断开连接后将当前线程缓存起来, 当在接到新的连接请求时快速响应无需创建新的线程 。这尤其对那些使用短连接的应用程序来说可 以极大的提高创建连接的效率。那么为了提高性能可以增大该参数的值。默认为60,可以设置为 120。

可以通过如下几个MySQL状态值来适当调整线程池的大小:

image-20220228171540527

当 Threads_cached 越来越少,但 Threads_connected 始终不降,且 Threads_created 持续升高,可 适当增加 thread_cache_size 的大小。

  • wait_timeout :指定 一个请求的最大连接时间 ,对于4GB左右内存的服务器可以设置为5-10。
  • interactive_timeout :表示服务器在关闭连接前等待行动的秒数。

这里给出一份my.cnf的参考配置:

image-20220228171617588

2.3优化数据库结构
2.3.1拆分表:冷热数据分离
2.3.2增加中间表

对于经常需要联合查询的表,可以建立中间表以提高查询效率。通过建立中间表,把需要经常联合查询的数据插入中间表中,然后将原来的联合查询改为对中间表的查询,以此来提高查询效率。(针对不是频繁更新的表)

2.3.4增加冗余字段
2.3.5优化数据类型
  • 情况1:对整数类型数据进行优化。
  • 情况2:既可以使用文本类型也可以使用整数类型的字段,要选择使用整数类型。
  • 情况3:避免使用TEXT、BLOB数据类型
  • 情况4:避免使用ENUM类型
  • 情况5:使用TIMESTAMP存储时间
  • 情况6:用DECIMAL代替FLOAT和DOUBLE存储精确浮点数

image-20220228174225644

image-20220228174254444总之,遇到数据量大的项目时,一定要在充分了解业务需求的前提下,合理优化数据类型,这样才能充 分发挥资源的效率,使系统达到最优。

2.3.6优化插入记录的速度
  1. MyISAM引擎的表: ① 禁用索引 ② 禁用唯一性检查 ③ 使用批量插入④ 使用LOAD DATA INFILE 批量导入
  2. InnoDB引擎的表: ① 禁用唯一性检查 ② 禁用外键检查 ③ 禁止自动提交
2.3.7使用非空约束

在设计字段的时候,如果业务允许,建议尽量使用非空约束

image-20220228174518748

2.3.8分析表、检查表与优化表

分析表

MySQL中提供了ANALYZE TABLE语句分析表,ANALYZE TABLE语句的基本语法如下:

ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name[,tbl_name]…

默认的,MySQL服务会将 ANALYZE TABLE语句写到binlog中,以便在主从架构中,从服务能够同步数据。 可以添加参数LOCAL 或者 NO_WRITE_TO_BINLOG取消将语句写到binlog中。 使用 ANALYZE TABLE 分析表的过程中,数据库系统会自动对表加一个 只读锁 。在分析期间,只能读取 表中的记录,不能更新和插入记录。ANALYZE TABLE语句能够分析InnoDB和MyISAM类型的表,但是不能 作用于视图。

ANALYZE TABLE分析后的统计结果会反应到 cardinality 的值,该值统计了表中某一键所在的列不重复 的值的个数。该值越接近表中的总行数,则在表连接查询或者索引查询时,就越优先被优化器选择使 用。也就是索引列的cardinality的值与表中数据的总条数差距越大,即使查询的时候使用了该索引作为查 询条件,存储引擎实际查询的时候使用的概率就越小。下面通过例子来验证下。cardinality可以通过 SHOW INDEX FROM 表名查看。

检查表

MySQL中可以使用 CHECK TABLE 语句来检查表。CHECK TABLE语句能够检查InnoDB和MyISAM类型的表 是否存在错误。CHECK TABLE语句在执行过程中也会给表加上 只读锁 。 对于MyISAM类型的表,CHECK TABLE语句还会更新关键字统计数据。而且,CHECK TABLE也可以检查视 图是否有错误,比如在视图定义中被引用的表已不存在。该语句的基本语法如下:

CHECK TABLE tbl_name [, tbl_name] ... [option] ... option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

其中,tbl_name是表名;option参数有5个取值,分别是QUICK、FAST、MEDIUM、EXTENDED和 CHANGED。各个选项的意义分别是:

QUICK :不扫描行,不检查错误的连接。

FAST :只检查没有被正确关闭的表。

CHANGED :只检查上次检查后被更改的表和没有被正确关闭的表。

MEDIUM :扫描行,以验证被删除的连接是有效的。也可以计算各行的关键字校验和,并使用计算 出的校验和验证这一点。

EXTENDED :对每行的所有关键字进行一个全面的关键字查找。这可以确保表是100%一致的,但 是花的时间较长。 option只对MyISAM类型的表有效,对InnoDB类型的表无效。比如:

image-20220228172738336

该语句对于检查的表可能会产生多行信息。最后一行有一个状态的 Msg_type 值,Msg_text 通常为 OK。 如果得到的不是 OK,通常要对其进行修复;是 OK 说明表已经是最新的了。表已经是最新的,意味着存 储引擎对这张表不必进行检查。

优化表

方式1:OPTIMIZE TABLE MySQL中使用 OPTIMIZE TABLE 语句来优化表。但是,OPTILMIZE TABLE语句只能优化表中的 VARCHAR 、 BLOB 或 TEXT 类型的字段。一个表使用了这些字段的数据类型,若已经 删除 了表的一大部 分数据,或者已经对含有可变长度行的表(含有VARCHAR、BLOB或TEXT列的表)进行了很多 更新 ,则 应使用OPTIMIZE TABLE来重新利用未使用的空间,并整理数据文件的 碎片 。

OPTIMIZE TABLE 语句对InnoDB和MyISAM类型的表都有效。该语句在执行过程中也会给表加上 只读锁 。

OPTILMIZE TABLE语句的基本语法如下:

OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

LOCAL | NO_WRITE_TO_BINLOG关键字的意义和分析表相同,都是指定不写入二进制日志。

image-20220228172832627

在MyISAM中,是先分析这张表,然后会整理相关的MySQL datafile,之后回收未使用的空间;在InnoDB 中,回收空间是简单通过Alter table进行整理空间。在优化期间,MySQL会创建一个临时表,优化完成之 后会删除原始表,然后会将临时表rename成为原始表。

说明: 在多数的设置中,根本不需要运行OPTIMIZE TABLE。即使对可变长度的行进行了大量的更 新,也不需要经常运行, 每周一次 或 每月一次 即可,并且只需要对 特定的表 运行。

2.3.9小结

上述这些方法都是有利有弊的。比如:

  • 修改数据类型,节省存储空间的同时,你要考虑到数据不能超过取值范围;
  • 增加冗余字段的时候,不要忘了确保数据一致性;
  • 把大表拆分,也意味着你的查询会增加新的连接,从而增加额外的开销和运维的成本。

因此,你一定要结合实际的业务需求进行权衡。

3.大表优化

3.1限定查询的范围

禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制 在一个月的范围内;

3.2读/写分离

经典的数据库拆分方案,主库负责写,从库负责读。

一主一从模式:

image-20220228173151809

双主双从模式:

image-20220228173204954

3.3垂直拆分

当数据量级达到 千万级 以上时,有时候我们需要把一个数据库切成多份,放到不同的数据库服务器上, 减少对单一数据库服务器的访问压力。

image-20220228173231939

垂直拆分的优点:

可以使得列数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区 可以简化表的结构,易于维护。

垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起 JOIN 操作。此外,垂直拆分会让事务 变得更加复杂。

3.4水平拆分

image-20220228173259100

下面补充一下数据库分片的两种常见方案:

  • 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。
  • 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。我们现在 谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。

4.其它调优策略

4.1服务器语句超时处理

在MySQL 8.0中可以设置 服务器语句超时的限制 ,单位可以达到 毫秒级别 。当中断的执行语句超过设置的 毫秒数后,服务器将终止查询影响不大的事务或连接,然后将错误报给客户端。

设置服务器语句超时的限制,可以通过设置系统变量 MAX_EXECUTION_TIME 来实现。默认情况下, MAX_EXECUTION_TIME的值为0,代表没有时间限制。 例如:

SET GLOBAL MAX_EXECUTION_TIME=2000;

SET SESSION MAX_EXECUTION_TIME=2000; #指定该会话中SELECT语句的超时时间
4.2创建全局通用表空间
4.3MySQL 8.0新特性:隐藏索引

最后

以上就是紧张大侠为你收集整理的数据库其他调优策略--MySQL的全部内容,希望文章能够帮你解决数据库其他调优策略--MySQL所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部