我是靠谱客的博主 爱听歌钻石,最近开发中收集的这篇文章主要介绍相机系统综述 —— ISP,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

转载出自:http://www.dididongdong.com/archives/3722

1、概述

ISP全称Image Signal Processing,即图像信号处理。主要用来对前端图像传感器输出信号处理的单元,以匹配不同厂商的图象传感器。
ISP 通过一系列数字图像处理算法完成对数字图像的效果处理。主要包括3A、坏点校正、去噪、强光抑制、背光补偿、色彩增强、镜头阴影校正等处理。ISP 包括逻辑部分以及运行在其上的firmware。

ISP 的控制结构如图1-1 所示,lens 将光信号投射到sensor 的感光区域后,sensor 经过光电转换,将Bayer 格式的原始图像送给ISP,ISP 经过算法处理,输出RGB 空间域的图像给后端的视频采集单元。在这个过程中,ISP 通过运行在其上的firmware 对ISP逻辑,lens 和sensor 进行相应控制,进而完成自动光圈、自动曝光、自动白平衡等功能。其中,firmware 的运转靠视频采集单元的中断驱动。PQ Tools 工具通过网口或者串口完成对ISP 的在线图像质量调节。

2、主要内部构成

如下图所示,ISP 内部包含 CPU、SUP IP、IF 等设备,事实上,可以认为 ISP 是一个 SOC,可以运行各种算法程序,实时处理图像信号。

CPU
CPU 即中央处理器,可以运行 AF、LSC 等各种图像处理算法,控制外围设备。现代的 ISP 内部的 CPU 一般都是 ARM Cortex-A 系列的,例如 Cortex-A5、Cortex-A7。
SUB IP
SUB IP 是各种功能模块的通称,对图像进行各自专业的处理。常见的 SUB IP 如 DIS、CSC、VRA 等。
图像传输接口
图像传输接口主要分两种,并口 ITU 和串口 CSI。CSI 是 MIPI CSI 的简称,鉴于 MIPI CSI 的诸多优点,在手机相机领域,已经广泛使用 MIPI-CSI 接口传输图像数据和各种自定义数据。外置 ISP 一般包含 MIPI-CSIS 和 MIPI-CSIM 两个接口。内置 ISP 一般只需要 MIPI-CSIS 接口。
通用外围设备
通用外围设备指 I2C、SPI、PWM、UART、WATCHDOG 等。ISP 中包含 I2C 控制器,用于读取 OTP 信息,控制 VCM 等。对于外置 ISP,ISP 本身还是 I2C 从设备。AP 可以通过 I2C 控制 ISP 的工作模式,获取其工作状态等。

3、ISP firmware 架构

ISP 的Firmware 包含三部分:
(1)一部分是ISP 控制单元和基础算法库;
(2)一部分是AE/AWB/AF 算法库;
(3)一部分是sensor 库;
Firmware 设计的基本思想是单独提供3A 算法库,由ISP 控制单元调度基础算法库和3A 算法库,同时sensor 库分别向ISP 基础算法库和3A 算法库注册函数回调,以实现差异化的sensor 适配。ISP firmware 架构如图1-2 所示。

不同的sensor 都以回调函数的形式,向ISP 算法库注册控制函数。ISP 控制单元调度基础算法库和3A 算法库时,将通过这些回调函数获取初始化参数,并控制sensor,如调节曝光时间、模拟增益、数字增益,控制lens 步进聚焦或旋转光圈等。
不同的sensor 都以回调函数的形式,向ISP 算法库注册控制函数,初始化参数是Host,谁是slave

4、控制方式

这里所说的控制方式是 AP 对 ISP 的操控方式。
(1) I2C/SPI
这一般是外置 ISP 的做法。SPI 一般用于下载固件、I2C 一般用于寄存器控制。在内核的 ISP 驱动中,外置 ISP 一般是实现为 I2C 设备,然后封装成 V4L2-SUBDEV。
(2) MEM MAP
这一般是内置 ISP 的做法。将 ISP 内部的寄存器地址空间映射到内核地址空间,
(3)MEM SHARE
这也是内置 ISP 的做法。AP 这边分配内存,然后将内存地址传给 ISP,二者实际上共享同一块内存。因此 AP 对这段共享内存的操作会实时反馈到 ISP 端。

5、ISP 架构方案

上文多次提到外置 ISP 和内置 ISP,这实际上是 ISP 的架构方案。

5.1 外置 ISP 架构

外置 ISP 架构是指在 AP 外部单独布置 ISP 芯片用于图像信号处理。外置 ISP 的架构图一般如下所示:

外置 ISP 架构的优点主要有:
1.能够提供更优秀的图像质量
在激烈的市场竞争下,能够存活到现在的外置 ISP 生产厂商在此领域一般都有很深的造诣,积累了丰富的影像质量调试经验,能够提供比内置 ISP 更优秀的性能和效果。因此,选用优质的外置 ISP 能提供专业而且优秀的图像质量。
2.能够支援更丰富的设计规划
外置 ISP 的选型基本不受 AP 的影响,因此魅族可以从各个优秀 ISP 芯片供应商的众多产品中甄选最合适的器件,从而设计出更多优秀的产品。
3.能够实现产品的差异化
内置 ISP 是封装在 AP 内部的,是和 AP 紧密的联系在一起,如果 AP 相同,那么 ISP 也就是一样的。因此基于同样 AP 生产出来的手机,其 ISP 的性能也是一样的,可供调教的条件也是固定的,这样就不利于实现产品的差异化。而如果选择外置 ISP,那么同一颗 AP,可以搭配不同型号的 ISP,这样可以实现产品的差异化,为给用户提供更丰富和优质的产品。
外置 ISP 架构的缺点主要有:
1.成本价格高
外置 ISP 需要单独购买,其售价往往不菲,而且某些特殊功能还需要额外支付费用。使用外置 ISP,需要进行额外的原理图设计和 LAYOUT,需要使用额外的元器件。
2.开发周期长
外置 ISP 驱动的设计需要多费精力和时间。使用外置 ISP 时,AP 供应商提供的 ISP 驱动就无法使用,需要额外设计编写外置 ISP 驱动。另外,为了和 AP 进行完美的搭配,将效果最大化,也往往需要付出更多的调试精力。上文也提到,使用外置 ISP,需要进行额外的原理图设计和 LAYOUT,需要使用额外的元器件,这也是需要花费时间进行处理的。

5.2 内置 ISP 架构

内置 ISP 架构是指在 AP 内部嵌入了 ISP IP,直接使用 AP 内部的 ISP 进行图像信号处理。 内置 ISP 的架构图一般如下所示:

内置 ISP 架构的优点主要有:
1.能降低成本价格
内置 ISP 内嵌在 AP 内部,因此无需像外置 ISP 一样需要额外购买,且不占 PCB 空间,无需单独为其设计外围电路,这样就能节省 BOM,降低成本。鉴于大多数用户在选购手机时会将价格因素放在重要的位置,因此降低成本能有效的降低终端成品价格,有利于占领市场。
2.能提高产品的上市速度
内置 ISP 和 AP 紧密结合,无需进行原理图设计和 LAYOUT 设计,因此可以减小开发周期,加快产品上市的速度。
3.能降低开发难度
如果使用内置 ISP,那么 AP 供应商能在前期提供相关资料,驱动开发人员可以有充足的时间熟悉相关资料,而且不会存在软件版本适配问题,也不存在平台架构兼容性问题。但是,如果使用外置 ISP,那么 ISP 供应商往往都不能提供针对某个平台的代码/资料,而且一般都存在软件版本兼容问题,这就需要驱动开发人员付出额的经历和时间。

6、主要功能特性

ISP 作为图像处理的核心器件,拥有十分重要的功能,下图展示了 ISP 处理图像数据的基本流程。

下面针对 ISP 的主要功能特性进行下介绍。

6.1 DEMOSAIC

DEMOSAIC 是 ISP 的主要功能之一。SENSOR 的像素点上覆盖着 CFA(彩色滤色矩阵,Color Filter Array),光线通过 CFA 后照射到像素上。CFA 由 R、G、B 三种颜色的遮光罩组成,每种遮光罩只允许一种颜色通过,因此每个像素输出的信号只包含 R、G、B 三者中的一种颜色信息。SENSOR 输出的这种数据就是 BAYER 数据,即通常所说的 RAW 数据。显而易见,RAW 数据所反映的颜色信息不是真实的颜色信息。DEMOSAIC 就是通过插值算法将将每个像素所代表的真实颜色计算出来。目前最常用的插补算法是利用该像素点周围像素的平均值来计算该点的插补值。如下图所示,左侧是RAW域原始图像,右侧是经过插值之后的图像。

目前主要应用的滤光层是bayer GRBG格式。如下图所示:

Bayer CFA作为最经典的阵列,它交替的使用一组(R,G),(B,G)滤镜,其中G占总像素的的1/2,R、B各占总像素的1/4,这是由于人眼对绿色更为敏感,能分辨更多的细节,同事G占据了光谱中重要且最宽的位置。

6.2 FOCUS

根据光学知识,景物在传感器上成像最清晰时处于合焦平面上。通过更改 LENS 的位置,使得景物在传感器上清晰的成像,是 ISP FOCUS 功能所需要完成的任务。FOCUS 分为手动和自动两种模式。ISP 可以运行 CONTRAST AF、PDAF、LASER AF 等算法实现自动对焦。

6.3 EXPOSURE,AE(Automatic Exposure)自动曝光

曝光。EXPOSURE 主要影响图像的明暗程度。ISP 需要实现 AE 功能,通过控制曝光程度,使得图像亮度适宜。
不同场景下,光照的强度有着很大的差别。人眼有着自适应的能力因此可以很快的调整,使自己可以感应到合适的亮度。而图像传感器却不具有这种自适应能力,因此必须使用自动曝光功能来确保拍摄的照片获得准确的曝光从而具有合适的亮度。
自动曝光的实现一般包括三个步骤:光强测量、场景分析和曝光补偿。
(1)光强测量:
光强测量的过程是利用图像的曝光信息来获得当前光照信息的过程。按照统计方式的不同,分为全局统计,中央权重统计或者加权平均统计方式等。全局统计方式是指将图像全部像素都统计进来,中央权重统计是指只统计图像中间部分,这主要是因为通常情况下图像的主体部分都位于图像的中间部分;加权平均的统计方式是指将图像分为不同的部分,每一部分赋予不同的权重,比如中间部分赋予最大权重,相应的边缘部分则赋予较小的权重,这样统计得到的结果会更加准确。
(2)场景分析:
是指为了获得当前光照的特殊情况而进行的处理,比如有没有背光照射或者正面强光等场景下。对这些信息的分析,可以提升图像传感器的易用性,并且能大幅度提高图像的质量,这是自动曝光中最为关键的技术。目前常用的场景分析的技术主要有模糊逻辑和人工神经网络算法。这些算法比起固定分区测光算法具有更高的可靠性,主要是因为在模糊规则制定或者神经网络的训练过程中已经考虑了各种不同光照条件。
(3)曝光补偿
在完成了光强测量和场景分析之后,就要控制相应的参数使得曝光调节生效。主要是通过设定曝光时间和曝光增益来实现的。通过光强测量时得到的当前图像的照度和增益值与目标亮度值的比较来获得应该设置的曝光时间和增益调整量。在实际情况下,相机通常还会采用镜头的光圈/快门系统来增加感光的范围。
在进行曝光和增益调整的过程中,一般都是变步长来调整的,这样可以提高调整的速度和精度。一般来讲,增益和曝光的步长设定如下图所示:

从上图中可以看出,在当前曝光量与目标量差别在range0以内的时候,说明当前曝光已经满足要求,不需要进行调整;差别在rangel的范围内时,则说明当前曝光与要求的光照有差别,但差别不大,只需要用较小的步长来进行调节即可;当差别在range2的时候,则表明差别较大,需要用较大步长来进行调节。在实现过程中还需要注意算法的收敛性。

6.4 WB

白平衡。白平衡与色温相关,用于衡量图像的色彩真实性和准确性。ISP需要实现 AWB 功能,力求在各种复杂场景下都能精确的还原物体本来的颜色。
人类视觉系统具有颜色恒常性的特点,因此人类对事物的观察可以不受到光源颜色的影响。但是图像传感器本身并不具有这种颜色恒常性的特点,因此,其在不同光线下拍摄到的图像,会受到光源颜色的影响而发生变化。例如在晴朗的天空下拍摄到的图像可能偏蓝,而在烛光下拍摄到的物体颜色会偏红。因此,为了消除光源颜色对于图像传感器成像的影响,自动白平衡功能就是模拟了人类视觉系统的颜色恒常性特点来消除光源颜色对图像的影响的。

6.5 LSC(Lens Shade Correction)——镜头阴影校正

用于消除图像周边和图片中心的不一致性,包含亮度和色度两方面。ISP 需要借助 OTP 中的校准数据完成 LSC 功能。
由于相机在成像距离较远时,随着视场角慢慢增大,能够通过照相机镜头的斜光束将慢慢减少,从而使得获得的图像中间比较亮,边缘比较暗,这个现象就是光学系统中的渐晕。由于渐晕现象带来的图像亮度不均会影响后续处理的准确性。因此从图像传感器输出的数字信号必须先经过镜头矫正功能块来消除渐晕给图像带来的影响。同时由于对于不同波长的光线透镜的折射率并不相同,因此在图像边缘的地方,其R、G、B的值也会出现偏差,导致CA(chroma aberration)的出现,因此在矫正渐晕的同时也要考虑各个颜色通道的差异性。
常用的镜头矫正的具体实现方法是,首先确定图像中间亮度比较均匀的区域,该区域的像素不需要做矫正;以这个区域为中心,计算出各点由于衰减带来的图像变暗的速度,这样就可以计算出相应R、G、B通道的补偿因子(即增益)。下图左边图像是未做镜头阴影校正的,右边图像是做了镜头阴影校正的。

6.6 GAMMA CORRECTION

伽玛校正。传感器对光线的响应和人眼对光线的响应是不同的。伽玛校正就是使得图像看起来符合人眼的特性。
伽马校正的最初起源是CRT屏幕的非线性,研究CRT电子枪的物理表明,电子枪的输入电压和输出光之间满足5.2幂函数关系,即荧光屏上显示的亮度正比于输入电压的5/2次方,这个指数被称为伽马。这种关系源于阴极、光栅和电子束之间的静电相互作用。由于对于输入信号的发光灰度,不是线性函数,而是指数函数,因此必需校正。校正原理如下图所示(没有图啊):
但是实际情况是,即便CRT显示是线性的,伽马校正依然是必须的,是因为人类视觉系统对于亮度的响应大致是成对数关系的,而不是线性的。人类视觉对低亮度变化的感觉比高亮度变化的感觉来的敏锐,当光强度小于1lux时,常人的视觉敏锐度会提高100倍t2118]。伽马校正就是为了校正这种亮度的非线性关系引入的一种传输函数。校正过程就是对图像的伽玛曲线进行编辑,检出图像信号中的深色部分和浅色部分,并使两者比例增大,从而提高图像对比度效果,以对图像进行非线性色调编辑。由于视觉环境和显示设备特性的差异,伽马一般取2.2~2.5之间的值。当用于校正的伽马值大于1时,图像较亮的部分被压缩,较暗的部分被扩展;而伽马值小于1时,情况则刚好相反。
现在常用的伽马校正是利用查表法来实现的,即首先根据一个伽马值,将不同亮度范围的理想输出值在查找表中设定好,在处理图像的时候,只需要根据输入的亮度,既可以得到其理想的输出值。在进行伽马校正的同时,可以一定范围的抑制图像较暗部分的噪声值,并提高图像的对比度。还可以实现图像现显示精度的调整,比如从l0bit精度至8bit精度的调整。上图分别是未做Gamma校正的,下图是做了Gamma校正的。

6.7 Sharp——锐化

CMOS输入的图像将引入各种噪声,有随机噪声、量化噪声、固定模式噪声等。ISP降噪处理过程中,势必将在降噪的同时,把一些图像细节给消除了,导致图像不够清晰。为了消除降噪过程中对图像细节的损失,需要对图像进行锐化处理,还原图像的相关细节。如下图所示,左图是未锐化的原始图像,右图是经过锐化之后的图像。

6.8 WDR(Wide Dynamic Range)——宽动态

动态范围(Dynamic Range)是指摄像机支持的最大输出信号和最小输出信号的比值,或者说图像最亮部分与最暗部分的灰度比值。普通摄像机的动态范围一般在1:1000(60db)左右,而宽动态(Wide Dynamic Range,WDR)摄像机的动态范围能达到1:1800-1:5600(65-75db)。

  宽动态技术主要用来解决摄像机在宽动态场景中采集的图像出现亮区域过曝而暗区域曝光不够的现象。简而言之,宽动态技术可以使场景中特别亮的区域和特别暗的区域在最终成像中同时看清楚。

6.9 RGBToYUV

YUV 是一种基本色彩空间, 人眼对亮度改变的敏感性远比对色彩变化大很多, 因此, 对于人眼而言, 亮度分量 Y 要比色度分量 U、 V 重要得多。 另外,YUV色彩空间分为YUV444,YUV422,YUV420等格式,这些格式有些比原始RGB图像格式所需内存要小很多,这样亮度分量和色度分量分别存储之后,给视频编码压缩图像带来一定好处

6.10 CCM(Color Correction Matrix)——颜色校正

颜色校正主要为了校正在滤光板处各颜色块之间的颜色渗透带来的颜色误差。一般颜色校正的过程是首先利用该图像传感器拍摄到的图像与标准图像相比较,以此来计算得到一个校正矩阵。该矩阵就是该图像传感器的颜色校正矩阵。在该图像传感器应用的过程中,及可以利用该矩阵对该图像传感器所拍摄的所有图像来进行校正,以获得最接近于物体真实颜色的图像。
一般情况下,对颜色进行校正的过程,都会伴随有对颜色饱和度的调整。颜色的饱和度是指色彩的纯度,某色彩的纯度越高,则其表现的就越鲜明;纯度越低,表现的则比较黯淡。RGB三原色的饱和度越高,则可显示的色彩范围就越广泛。

6.10 Denoise—–去除噪声

使用 cmos sensor 获取图像,光照程度和传感器问题是生成图像中大量噪声的主要因素。同时, 当信号经过 ADC 时, 又会引入其他一些噪声。 这些噪声会使图像整体变得模糊, 而且丢失很多细节, 所以需要对图像进行去噪处理空间去噪传统的方法有均值滤波、 高斯滤波等。
但是, 一般的高斯滤波在进行采样时主要考虑了像素间的空间距离关系, 并没有考虑像素值之间的相似程度, 因此这样得到的模糊结果通常是整张图片一团模糊。 所以, 一般采用非线性去噪算法, 例如双边滤波器, 在采样时不仅考虑像素在空间距离上的关系, 同时加入了像素间的相似程度考虑, 因而可以保持原始图像的大体分块, 进而保持边缘。

6.11 DPC(Bad Point Correction)——坏点校正

所谓坏点,是指像素阵列中与周围像素点的变化表现出明显不同的像素,因为图像传感器是成千上万的元件工作在一起,因此出现坏点的概率很大。一般来讲,坏点分为三类:第一类是死点,即一直表现为最暗值的点;第二类是亮点,即一直表现为最亮值的点:第三类是漂移点,就是变化规律与周围像素明显不同的像素点。由于图像传感器中CFA的应用,每个像素只能得到一种颜色信息,缺失的两种颜色信息需要从周围像素中得到。如果图像中存在坏点的话,那么坏点会随着颜色插补的过程往外扩散,直到影响整幅图像。因此必须在颜色插补之前进行坏点的消除。

6.12 GB(Green Balance)——绿平衡

由于感光器件制造工艺和电路问题,Gr,Gb数值存在差异,将出现格子迷宫现象可使用均值算法处理Gr,Gb通道存在的差异,同时保留高频信息。

6.13 BLC(BlackLevel Correction)——黑电平校正

Black Level 是用来定义图像数据为 0 时对应的信号电平。由于暗电流的影响, 传感器出来的实际原始数据并不是我们需要的黑平衡( 数据不为0) 。 所以,为减少暗电流对图像信号的影响,可以采用的有效的方法是从已获得的图像信号中减去参考暗电流信号。一般情况下, 在传感器中,实际像素要比有效像素多, 像素区头几行作为不感光区( 实际上, 这部分区域也做了 RGB 的 color filter) , 用于自动黑电平校正, 其平均值作为校正值, 然后在下面区域的像素都减去此矫正值, 那么就可以将黑电平矫正过来了。如下图所示,左边是做黑电平校正之前的图像,右边是做了黑电平校正之后的图像。

CROP/RESIZE
图像剪裁,即改变图像的尺寸。可用于输出不同分辨率的图像。
VRA
视觉识别。用于识别特定的景物,例如人脸识别,车牌识别。ISP 通过各种 VRA 算法,准确的识别特定的景物。
DRC
动态范围校正。动态范围即图像的明暗区间。DRC 可以使得暗处的景物不至于欠曝,而亮处的景物不至于过曝。ISP 需要支持 DRC 功能。
CSC
颜色空间转换。例如,ISP 会将 RGB 信号转化为 YUV 信号输出。
IS
图像稳定。IS 的主要作用是使得图像不要因为手持时轻微的抖动而模糊不清。IS 有很多种,例如 OIS、DIS、EIS。ISP 可以实现 DIS 和 EIS。

事实上,ISP 除了上面提到的主要功能外,还需要支持 DENOISE、CONTRAST、SATURATION、SHARPNESS 等调整功能。

补充:

注册回调
简单解释就是一个高层调用底层,底层再回过头来调用高层,这个过程就叫注册回调, 连接高层和底层就叫注册回调函数。高层程序C1调用底层程序C2,而在底层程序C2 又调用了高层程序C2的callback函数,那么这个callback函数对于高层程序C1来说就是回调函数。 在设计模式中这个方式叫回调模式。

 

最后

以上就是爱听歌钻石为你收集整理的相机系统综述 —— ISP的全部内容,希望文章能够帮你解决相机系统综述 —— ISP所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部