转自:微点阅读 https://www.weidianyuedu.com
Python 在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。常见的经典 Python 多线程、多进程教程多显得偏"重"。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。
传统的例子
简单搜索下"Python 多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子:
-
import os -
import PIL -
from multiprocessing importPool -
from PIL importImage -
SIZE = (75,75) -
SAVE_DIRECTORY = "thumbs" -
def get_image_paths(folder): -
return(os.path.join(folder, f) -
for f in os.listdir(folder) -
if"jpeg"in f) -
def create_thumbnail(filename): -
im = Image.open(filename) -
im.thumbnail(SIZE, Image.ANTIALIAS) -
base, fname = os.path.split(filename) -
save_path = os.path.join(base, SAVE_DIRECTORY, fname) -
im.save(save_path) -
if __name__ == "__main__": -
folder = os.path.abspath( -
"11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840") -
os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) -
images = get_image_paths(folder) -
pool = Pool() -
pool.map(creat_thumbnail, images) -
pool.close() -
pool.join()
哈,看起来有些像 Java 不是吗?
我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。
问题在于…
首先,你需要一个样板类;其次,你需要一个队列来传递对象;而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。
worker 越多,问题越多
按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。
-
#Example2.py -
""" -
A more realistic thread pool example -
""" -
import time -
import threading -
importQueue -
import urllib2 -
classConsumer(threading.Thread): -
def __init__(self, queue): -
threading.Thread.__init__(self) -
self._queue = queue -
def run(self): -
whileTrue: -
content = self._queue.get() -
if isinstance(content, str) and content == "quit": -
break -
response = urllib2.urlopen(content) -
print"Bye byes!" -
defProducer(): -
urls = [ -
"http://www.python.org", "http://www.yahoo.com" -
"http://www.scala.org", "http://www.google.com" -
# etc.. -
] -
queue = Queue.Queue() -
worker_threads = build_worker_pool(queue, 4) -
start_time = time.time() -
# Add the urls to process -
for url in urls: -
queue.put(url) -
# Add the poison pillv -
for worker in worker_threads: -
queue.put("quit") -
for worker in worker_threads: -
worker.join() -
print"Done! Time taken: {}".format(time.time() - start_time) -
def build_worker_pool(queue, size): -
workers = [] -
for _ in range(size): -
worker = Consumer(queue) -
worker.start() -
workers.append(worker) -
return workers -
if __name__ == "__main__": -
Producer()
这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……
至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。
何不试试 map
map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。
-
urls = ["http://www.yahoo.com", "http://www.reddit.com"] -
results = map(urllib2.urlopen, urls)
上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:
-
results = [] -
for url in urls: -
results.append(urllib2.urlopen(url))
map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。
为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。
在 Python 中有个两个库包含了 map 函数:multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.
这里多扯两句:multiprocessing.dummy?mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!
dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。
动手尝试
使用下面的两行代码来引用包含并行化 map 函数的库:
-
from multiprocessing importPool -
from multiprocessing.dummy importPoolasThreadPool
实例化 Pool 对象:
-
pool = ThreadPool()
这条简单的语句替代了 example2.py 中 buildworkerpool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。
Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。
一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4 线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。
创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py
-
import urllib2 -
from multiprocessing.dummy importPoolasThreadPool -
urls = [ -
"http://www.python.org", -
"http://www.python.org/about/", -
"http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html", -
"http://www.python.org/doc/", -
"http://www.python.org/download/", -
"http://www.python.org/getit/", -
"http://www.python.org/community/", -
"https://wiki.python.org/moin/", -
"http://planet.python.org/", -
"https://wiki.python.org/moin/LocalUserGroups", -
"http://www.python.org/psf/", -
"http://docs.python.org/devguide/", -
"http://www.python.org/community/awards/" -
# etc.. -
] -
# Make the Pool of workers -
pool = ThreadPool(4) -
# Open the urls in their own threads -
# and return the results -
results = pool.map(urllib2.urlopen, urls) -
#close the pool and wait for the work to finish -
pool.close() -
pool.join() -
实际起作用的代码只有 4行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。 -
# results = [] -
# for url in urls: -
# result = urllib2.urlopen(url) -
# results.append(result) -
# # ------- VERSUS ------- # -
# # ------- 4 Pool ------- # -
# pool = ThreadPool(4) -
# results = pool.map(urllib2.urlopen, urls) -
# # ------- 8 Pool ------- # -
# pool = ThreadPool(8) -
# results = pool.map(urllib2.urlopen, urls) -
# # ------- 13 Pool ------- # -
# pool = ThreadPool(13) -
# results = pool.map(urllib2.urlopen, urls)
结果:
-
# Single thread: 14.4 Seconds -
# 4 Pool: 3.1 Seconds -
# 8 Pool: 1.4 Seconds -
# 13 Pool: 1.3 Seconds
很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。
另一个真实的例子
生成上千张图片的缩略图 这是一个 CPU 密集型的任务,并且十分适合进行并行化。
基础单进程版本
-
import os -
import PIL -
from multiprocessing importPool -
from PIL importImage -
SIZE = (75,75) -
SAVE_DIRECTORY = "thumbs" -
def get_image_paths(folder): -
return(os.path.join(folder, f) -
for f in os.listdir(folder) -
if"jpeg"in f) -
def create_thumbnail(filename): -
im = Image.open(filename) -
im.thumbnail(SIZE, Image.ANTIALIAS) -
base, fname = os.path.split(filename) -
save_path = os.path.join(base, SAVE_DIRECTORY, fname) -
im.save(save_path) -
if __name__ == "__main__": -
folder = os.path.abspath( -
"11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840") -
os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) -
images = get_image_paths(folder) -
for image in images: -
create_thumbnail(Image)
上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。
这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。
如果我们使用 map 函数来代替 for 循环:
-
import os -
import PIL -
from multiprocessing importPool -
from PIL importImage -
SIZE = (75,75) -
SAVE_DIRECTORY = "thumbs" -
def get_image_paths(folder): -
return(os.path.join(folder, f) -
for f in os.listdir(folder) -
if"jpeg"in f) -
def create_thumbnail(filename): -
im = Image.open(filename) -
im.thumbnail(SIZE, Image.ANTIALIAS) -
base, fname = os.path.split(filename) -
save_path = os.path.join(base, SAVE_DIRECTORY, fname) -
im.save(save_path) -
if __name__ == "__main__": -
folder = os.path.abspath( -
"11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840") -
os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) -
images = get_image_paths(folder) -
pool = Pool() -
pool.map(creat_thumbnail, images) -
pool.close() -
pool.join()
5.6 秒!
虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。
到这里,我们就实现了(基本)通过一行 Python 实现并行化。
最后
以上就是怕黑台灯最近收集整理的关于如何使用Python 简单实现并行化?的全部内容,更多相关如何使用Python内容请搜索靠谱客的其他文章。
发表评论 取消回复