我是靠谱客的博主 调皮小懒虫,最近开发中收集的这篇文章主要介绍python多核多进程,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

转载地址:https://www.cnblogs.com/pdev/p/5267720.html

注意:线程是和CPU核绑定的,而进程会在核中间进行切换

这里写图片描述

1、多线程与多进程

之前OS课学过…..

in general,线程是比进程低一级的调度单位。一个进程可以包含多个进程。

线程之间的切换相对于进程之间更为方便,代价也更低。所以讲道理多线程的效率比多进程是要高的。

Linux自从2.6内核开始,就会把不同的线程交给不同的核心去处理。Windows也从NT.4.0开始支持这一特性。

【ref:http://blog.csdn.net/delacroix_xu/article/details/5928121

2.多线程与Python

好多语言都可以很好的资词多线程。然而Python是个例外……

对于IO密集型的任务,使用多线程还是能提高一下CPU使用率。对于CPU密集型的任务,Python中的多线程其实是个鸡肋……没卵用……

在Python的解释器CPython中存在一个互斥锁。简单来讲就是同一时间只能有一个线程在执行,其它线程都处于block模式。

【ref:https://www.zhihu.com/question/22191088

3.多进程

要想在py中充分利用多核cpu,就只能用多进程了。

虽然代价高了些,但是比起并行计算带来的性能提升这些也微不足道了。最重要的是好!写!啊!

这里来看第一个sample:

 1 #main.py
 2 import multiprocessing
 3 import time
 4 import numpy as np
 5 from func import writeln
 6 from calc import calc
 7 import scipy.io as sio
 8 
 9 def func1(x):
10     calc()
11     c1=0
12     d1=np.zeros(233,int)
13     for i in xrange(5):
14         d1[c1]=writeln(1,i)
15         c1+=1
16         #time.sleep(1)
17     sio.savemat('11.mat',{'dd':d1})
18 
19 def func2(x):
20     calc()
21     c2=0
22     d2=np.zeros(233,int)
23     for i in xrange(5):
24         d2[c2]=writeln(2,i)
25         c2+=1
26         #time.sleep(1)
27     sio.savemat('22.mat',{'dd':d2})
28 
29 def func3(x):
30     calc()
31     c3=0
32     d3=np.zeros(233,int)
33     for i in xrange(5):
34         d3[c3]=writeln(3,i)
35         c3+=1
36         #time.sleep(1)
37     sio.savemat('33.mat',{'dd':d3})
38 
39 def func4(x):
40     calc()
41     c4=0
42     d4=np.zeros(233,int)
43     for i in xrange(5):
44         d4[c4]=writeln(4,i)
45         c4+=1
46         #time.sleep(1)
47     sio.savemat('44.mat',{'dd':d4})
48 
49 if __name__ == "__main__":
50     pool = multiprocessing.Pool(processes=4)        
51 
52     pool.apply_async(func1, (1, )) #注意这里没有传入参数,但是仍然能够调用函数
53     pool.apply_async(func2, (2, ))#1,2,3,4指的是分配的CPU的核的编号,虽然指定了,但还是会根据资源来切换
54     pool.apply_async(func3, (3, ))
55     pool.apply_async(func4, (4, ))
56 
57     pool.close()
58     pool.join()
59 
60 
61     print "Sub-process(es) done."
1 #func.py
2 def writeln(x,y):
3     aa=x*10+y
4     print(aa)
5     return(aa)
1 #calc.py
2 def calc():
3     x=233
4     for i in xrange(1000000000):
5         x=x+1
6         x=x-1

main.py

Line 49 新建一个进程池,并指定本机cpu核心数量为4

     这样主程序运行时就会建立出4个额外的进程,每个进程可以运行在不同核心上,从而实现了多核并行

Line 51–54 将func1–func4这四个函数都加到进程池中。

       注意,如果我们加入了超过4个func,那么同时只会有四个在运行。剩下的要排队等待

calc.py

这是一个死循环….是为了演示cpu使用量…

运行效果:

单个calc()运行时,CPU占用量是25%
这里写图片描述
启用multiprocessor之后,一共开启了5个python.exe进程(一个主+4个子进程),cpu占用100%。同时风扇也开始狂转……
这里写图片描述

最后

以上就是调皮小懒虫为你收集整理的python多核多进程的全部内容,希望文章能够帮你解决python多核多进程所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(64)

评论列表共有 0 条评论

立即
投稿
返回
顶部