我是靠谱客的博主 柔弱心锁,最近开发中收集的这篇文章主要介绍Linux上线程开发API概要(线程),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

进程与线程
      典型的UNIX/Linux进程可以看成只有一个控制线程:一个进程在同一时刻只做一件事情。有了多个控制线程后,在程序设计时可以把进程设计成在同一时刻做不止一件事,每个线程各自处理独立的任务。

       进程是程序执行时的一个实例,是担当分配系统资源(CPU时间、内存等)的基本单位。在面向线程设计的系统中,进程本身不是基本运行单位,而是线程的容器。程序本身只是指令、数据及其组织形式的描述,进程才是程序(那些指令和数据)的真正运行实例。
       “进程——资源分配的最小单位,线程——程序执行的最小单位”
      一个进程至少包含一个线程,进程是运行的程序,程序是静态的概念,进程是动态的概念。
      进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,可以用线程,也可以用进程间的通信。
使用线程的理由
      从上面我们知道了进程与线程的区别,其实这些区别也就是我们使用线程的理由。总的来说就是:进程有独立的地址空间,线程没有单独的地址空间(同一进程内的线程共享进程的地址空间)。

      使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种"昂贵"的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。据统计,总的说来,一个进程的开销大约是一个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较大的区别。

      使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地方。
Linux上线程开发API概要
      多线程开发在 Linux 平台上已经有成熟的 pthread 库支持。其涉及的多线程开发的最基本概念主要包含三点:线程,互斥锁,条件。其中,线程操作又分线程的创建,退出,等待 3 种。互斥锁则包括 4 种操作,分别是创建,销毁,加锁和解锁。条件操作有 5 种操作:创建,销毁,触发,广播和等待。其他的一些线程扩展概念,如信号灯等,都可以通过上面的三个基本元素的基本操作封装出来。详细请见下表:
在这里插入图片描述1、线程创建

#include <pthread.h>
int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg);
// 返回:若成功返回0,否则返回错误编号
//pthread_t是无符号的长整型,第一个参数是pthread_t类型的指针,
//第个二参数是线程的属性
//第三个参数是函数指针
//最后一个参数是给线程传参的一个参数

当pthread_create成功返回时,由tidp指向的内存单元被设置为新创建线程的线程ID。attr参数用于定制各种不同的线程属性,暂可以把它设置为NULL,以创建默认属性的线程。

新创建的线程从start_rtn函数的地址开始运行,该函数只有一个无类型指针参数arg。如果需要向start_rtn函数传递的参数不止一个,那么需要把这些参数放到一个结构中,然后把这个结构的地址作为arg参数传入。
线程的退出

单个线程可以通过以下三种方式退出,在不终止整个进程的情况下停止它的控制流:

1)线程只是从启动例程中返回,返回值是线程的退出码。

2)线程可以被同一进程中的其他线程取消。

3)线程调用pthread_exit:
pthread_exit函数

#include <pthread.h>
int pthread_exit(void *rval_ptr);

rval_ptr是一个无类型指针,与传给启动例程的单个参数类似。进程中的其他线程可以通过调用pthread_join函数访问到这个指针。
线程等待

#include <pthread.h>
int pthread_join(pthread_t thread, void **rval_ptr);
// 返回:若成功返回0,否则返回错误编号

调用这个函数的线程将一直阻塞,直到指定的线程调用pthread_exit、从启动例程中返回或者被取消。如果例程只是从它的启动例程返回i,rval_ptr将包含返回码。如果线程被取消,由rval_ptr指定的内存单元就置为PTHREAD_CANCELED。

可以通过调用pthread_join自动把线程置于分离状态,这样资源就可以恢复。如果线程已经处于分离状态,pthread_join调用就会失败,返回EINVAL。

如果对线程的返回值不感兴趣,可以把rval_ptr置为NULL。在这种情况下,调用pthread_join函数将等待指定的线程终止,但并不获得线程的终止状态。
线程的脱离
一个线程或者是可汇合(joinable,默认值),或者是脱离的(detached)。当一个可汇合的线程终止时,它的线程ID和退出状态将留存到另一个线程对它调用pthread_join。脱离的线程却像守护进程,当它们终止时,所有相关的资源都被释放,我们不能等待它们终止。如果一个线程需要知道另一线程什么时候终止,那就最好保持第二个线程的可汇合状态。

pthread_detach函数把指定的线程转变为脱离状态。

#include <pthread.h>
int pthread_detach(pthread_t thread);
// 返回:若成功返回0,否则返回错误编号

本函数通常由想让自己脱离的线程使用,就如以下语句:

pthread_detach(pthread_self());

线程ID获取及比较

#include <pthread.h>
pthread_t pthread_self(void);
// 返回:调用线程的ID

对于线程ID比较,为了可移植操作,我们不能简单地把线程ID当作整数来处理,因为不同系统对线程ID的定义可能不一样。我们应该要用下边的函数:

#include <pthread.h>
int pthread_equal(pthread_t tid1, pthread_t tid2);
// 返回:若相等则返回非0值,否则返回0

对于多线程程序来说,我们往往需要对这些多线程进行同步。同步(synchronization)是指在一定的时间内只允许某一个线程访问某个资源。而在此时间内,不允许其它的线程访问该资源。我们可以通过互斥锁(mutex),条件变量(condition variable)和读写锁(reader-writer lock)来同步资源。在这里,我们暂不介绍读写锁。
代码示例

#include<stdio.h>
#include<pthread.h>
//int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg);

void*func1(void *arg)
{
        static int ret=10;//如果不是 static 函数调用结束后 ret 的值会消失
        static char*p="t1 is run out";
        printf("t1 :%ld thread is createdn",(unsigned long)pthread_self());
        printf("t1:param is %dn",*((int*)arg));
        pthread_exit((void*)p);
}
int main()
{
        int ret;
        int param=100;
        char *pret;
        pthread_t t1;
        ret=pthread_create(&t1,NULL,func1,(void*)&param);
        if(ret==0){
                printf("main:create t1 successn");
        }
        printf("main : %ld n",(unsigned long)pthread_self());
        pthread_join(t1,(void**)&pret);//这个函数用来等t1线程的退出,他是用在主线程中
        printf("main:t1 quite return is %sn",pret);
        return 0;
}

体现线程共享内存空间代码

{
#include<stdio.h>
#include<pthread.h>
//int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg);
int g_data=0;//主进程和进程1和进程2都共享这一个全局变量
void*func1(void *arg)
{
        printf("t1 :%ld thread is createdn",(unsigned long)pthread_self());
        printf("t1:param is %dn",*((int*)arg));
        while(1){
                printf("t1 printf is %dn",g_data++);
                sleep(1);
        }
}

void*func2(void *arg)
{

        printf("t2 :%ld thread is createdn",(unsigned long)pthread_self());
        printf("t2:param is %dn",*((int*)arg));
        while(1){
                printf("t2 printf is %dn",g_data++);
                sleep(1);
        }
}

int main()
{
        int ret;
        int param=100;
        pthread_t t1;
        pthread_t t2;
        ret=pthread_create(&t1,NULL,func1,(void*)&param);
        if(ret==0){
                printf("main:create t1 successn");
        }
        ret=pthread_create(&t2,NULL,func2,(void*)&param);
        if(ret==0){
                printf("main:create t2 successn");
        }
        printf("main : %ld n",(unsigned long)pthread_self());
        while(1){
                printf("main printf is %dn",g_data++);
                sleep(1);
        }
        pthread_join(t1,NULL);//yong laidengdai t1 xiancheng tuichu
        pthread_join(t2,NULL);//yong laidengdai t1 xiancheng tuichu

        return 0;
}
//c此程序三个进程的运行顺序没有确定谁先谁后

最后

以上就是柔弱心锁为你收集整理的Linux上线程开发API概要(线程)的全部内容,希望文章能够帮你解决Linux上线程开发API概要(线程)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部