概述
Pytorch提取模型特征向量
# -*- coding: utf-8 -*-
"""
dj
"""
import torch
import torch.nn as nn
import os
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class M(nn.Module):
def __init__(self, backbone1, drop, pretrained=True):
super(M,self).__init__()
if pretrained:
img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet')
else:
img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None)
self.img_encoder = list(img_model.children())[:-2]
self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
self.img_encoder = nn.Sequential(*self.img_encoder)
if drop > 0:
self.img_fc = nn.Sequential(FCViewer())
else:
self.img_fc = nn.Sequential(
FCViewer())
def forward(self, x_img):
x_img = self.img_encoder(x_img)
x_img = self.img_fc(x_img)
return x_img
model1=M('resnet18',0,pretrained=True)
features_dir = '/home/cc/Desktop/features'
transform1 = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()])
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
pic=file_path+'/'+name
img = Image.open(pic)
img1 = transform1(img)
x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
y = model1(x)
y = y.data.numpy()
y = y.tolist()
#print(y)
test=pd.DataFrame(data=y)
#print(test)
test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
jiazaixunlianhaodemoxing
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
class ResidualBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1):
super(ResidualBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outchannel),
nn.ReLU(inplace=True),
nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(outchannel)
)
self.shortcut = nn.Sequential()
if stride != 1 or inchannel != outchannel:
self.shortcut = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outchannel)
)
def forward(self, x):
out = self.left(x)
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, ResidualBlock, num_classes=10):
super(ResNet, self).__init__()
self.inchannel = 64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1]
layers = []
for stride in strides:
layers.append(block(self.inchannel, channels, stride))
self.inchannel = channels
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def ResNet18():
return ResNet(ResidualBlock)
import os
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class M(nn.Module):
def __init__(self, backbone1, drop, pretrained=True):
super(M,self).__init__()
if pretrained:
img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet')
else:
img_model = ResNet18()
we='/home/cc/Desktop/dj/model1/incption--7'
# 模型定义-ResNet
#net = ResNet18().to(device)
img_model.load_state_dict(torch.load(we))#diaoyong
self.img_encoder = list(img_model.children())[:-2]
self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
self.img_encoder = nn.Sequential(*self.img_encoder)
if drop > 0:
self.img_fc = nn.Sequential(FCViewer())
else:
self.img_fc = nn.Sequential(
FCViewer())
def forward(self, x_img):
x_img = self.img_encoder(x_img)
x_img = self.img_fc(x_img)
return x_img
model1=M('resnet18',0,pretrained=None)
features_dir = '/home/cc/Desktop/features'
transform1 = transforms.Compose([
transforms.Resize(56),
transforms.CenterCrop(32),
transforms.ToTensor()])
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
pic=file_path+'/'+name
img = Image.open(pic)
img1 = transform1(img)
x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
y = model1(x)
y = y.data.numpy()
y = y.tolist()
#print(y)
test=pd.DataFrame(data=y)
#print(test)
test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
以上这篇Pytorch提取模型特征向量保存至csv的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
最后
以上就是自然石头为你收集整理的python保存模型 特征_Pytorch提取模型特征向量保存至csv的例子的全部内容,希望文章能够帮你解决python保存模型 特征_Pytorch提取模型特征向量保存至csv的例子所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复