我是靠谱客的博主 欣喜路灯,最近开发中收集的这篇文章主要介绍JAVA的GC操作理解-01,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本文相关文章

JAVA的GC操作理解-01

JAVA的GC操作理解-02

JAVA的GC操作理解-补充

1.什么是垃圾回收?

垃圾回收 ( Garbage Collection ) 是 Java 虚拟机 ( JVM ) 垃圾回收器提供的一种用于在空闲时间不定时回收无任何对象引用的对象占据的内存空间的一种机制。

注意:垃圾回收回收的是无任何引用的对象占据的内存空间而不是对象本身。垃圾回收只会负责释放那些对象占有的内存。对象是个抽象的词,包括引用和其占据的内存空间。当对象没有任何引用时其占据的内存空间随即被收回备用,此时对象也就被销毁。但不能说是回收对象,可以理解为一种文字游戏。

分析:

引用:如果Reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。(引用都有哪些?对垃圾回收又有什么影响?)

垃圾:无任何对象引用的对象(怎么通过算法找到这些对象呢?)。

回收:清理“垃圾”占用的内存空间而非对象本身(怎么通过算法实现回收呢?)。

发生地点:一般发生在堆内存中,因为大部分的对象都储存在堆内存中(堆内存为了配合垃圾回收有什么不同区域划分,各区域有什么不同?)。

发生时间:程序空闲时间不定时回收(回收的执行机制是什么?是否可以通过显示调用函数的方式来确定的进行回收过程?)

带着这些问题我们开始进一步的分析。

2.Java中的对象引用

(1)强引用(Strong Reference):如“Object obj = new Object()”,这类引用是Java程序中最普遍的。只要强引用还存在,垃圾收集器就永远不会回收掉被引用的对象。

(2)软引用(Soft Reference):它用来描述一些可能还有用,但并非必须的对象。在系统内存不够用时,这类引用关联的对象将被垃圾收集器回收。JDK1.2之后提供了SoftReference类来实现软引用。

(3)弱引用(Weak Reference):它也是用来描述非须对象的,但它的强度比软引用更弱些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK1.2之后,提供了WeakReference类来实现弱引用。

(4)虚引用(Phantom Reference):最弱的一种引用关系,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的是希望能在这个对象被收集器回收时收到一个系统通知。JDK1.2之后提供了PhantomReference类来实现虚引用。

3.判断对象是否是垃圾的算法。

Java语言规范没有明确地说明JVM使用哪种垃圾回收算法,但是任何一种垃圾回收算法一般要做2件基本的事情:(1)找到所有存活对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。

3.1引用计数算法(Reference Counting Collector)

堆中每个对象(不是引用)都有一个引用计数器。当一个对象被创建并初始化赋值后,该变量计数设置为1。每当有一个地方引用它时,计数器值就加1(a = b, b被引用,则b引用的对象计数+1)。当引用失效时(一个对象的某个引用超过了生命周期(出作用域后)或者被设置为一个新值时),计数器值就减1。任何引用计数为0的对象可以被当作垃圾收集。当一个对象被垃圾收集时,它引用的任何对象计数减1。

优点:引用计数收集器执行简单,判定效率高,交织在程序运行中。对程序不被长时间打断的实时环境比较有利(OC的内存管理使用该算法)。

缺点: 难以检测出对象之间的循环引用。同时,引用计数器增加了程序执行的开销。所以Java语言并没有选择这种算法进行垃圾回收。

早期的JVM使用引用计数,现在大多数JVM采用对象引用遍历(根搜索算法)。

3.2根搜索算法(Tracing Collector)

首先了解一个概念:根集(Root Set)

所谓根集(Root Set)就是正在执行的Java程序可以访问的引用变量(注意:不是对象)的集合(包括局部变量、参数、类变量),程序可以使用引用变量访问对象的属性和调用对象的方法。

这种算法的基本思路:

(1)通过一系列名为“GC Roots”的对象作为起始点,寻找对应的引用节点。

(2)找到这些引用节点后,从这些节点开始向下继续寻找它们的引用节点。

(3)重复(2)。

(4)搜索所走过的路径称为引用链,当一个对象到GC Roots没有任何引用链相连时,就证明此对象是不可用的。

Java和C#中都是采用根搜索算法来判定对象是否存活的。

标记可达对象:

JVM中用到的所有现代GC算法在回收前都会先找出所有仍存活的对象。根搜索算法是从离散数学中的图论引入的,程序把所有的引用关系看作一张图。下图3.0中所展示的JVM中的内存布局可以用来很好地阐释这一概念:

图 3.0 标记(marking)对象
图 3.0 标记(marking)对象

首先,垃圾回收器将某些特殊的对象定义为GC根对象。所谓的GC根对象包括:

(1)虚拟机栈中引用的对象(栈帧中的本地变量表);

(2)方法区中的常量引用的对象;

(3)方法区中的类静态属性引用的对象;

(4)本地方法栈中JNI(Native方法)的引用对象。

(5)活跃线程。

接下来,垃圾回收器会对内存中的整个对象图进行遍历,它先从GC根对象开始,然后是根对象引用的其它对象,比如实例变量。回收器将访问到的所有对象都标记为存活。

存活对象在上图中被标记为蓝色。当标记阶段完成了之后,所有的存活对象都已经被标记完了。其它的那些(上图中灰色的那些)也就是GC根对象不可达的对象,也就是说你的应用不会再用到它们了。这些就是垃圾对象,回收器将会在接下来的阶段中清除它们。

关于标记阶段有几个关键点是值得注意的:

(1)开始进行标记前,需要先暂停应用线程,否则如果对象图一直在变化的话是无法真正去遍历它的。暂停应用线程以便JVM可以尽情地收拾家务的这种情况又被称之为安全点(Safe Point),这会触发一次Stop The World(STW)暂停。触发安全点的原因有许多,但最常见的应该就是垃圾回收了。

(2)暂停时间的长短并不取决于堆内对象的多少也不是堆的大小,而是存活对象的多少。因此,调高堆的大小并不会影响到标记阶段的时间长短。

(3)在根搜索算法中,要真正宣告一个对象死亡,至少要经历两次标记过程:

1.如果对象在进行根搜索后发现没有与GC Roots相连接的引用链,那它会被第一次标记并且进行一次筛选。筛选的条件是此对象是否有必要执行 finalize()方法(可看作析构函数,类似于OC中的dealloc,Swift中的deinit)。当对象没有覆盖finalize()方法,或finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为没有必要执行。

2.如果该对象被判定为有必要执行finalize()方法,那么这个对象将会被放置在一个名为F-Queue队列中,并在稍后由一条由虚拟机自动建立的、低优先级的Finalizer线程去执行finalize()方法。finalize()方法是对象逃脱死亡命运的最后一次机会(因为一个对象的finalize()方法最多只会被系统自动调用一次),稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果要在finalize()方法中成功拯救自己,只要在finalize()方法中让该对象重新引用链上的任何一个对象建立关联即可。而如果对象这时还没有关联到任何链上的引用,那它就会被回收掉。

(4)实际上GC判断对象是否可达看的是强引用。

当标记阶段完成后,GC开始进入下一阶段,删除不可达对象。

4.回收垃圾对象内存的算法

4.1 Tracing算法(Tracing Collector) 或 标记—清除算法

标记—清除算法是最基础的收集算法,为了解决引用计数法的问题而提出。它使用了根集的概念,它分为“标记”和“清除”两个阶段:首先标记出所需回收的对象,在标记完成后统一回收掉所有被标记的对象,它的标记过程其实就是前面的根搜索算法中判定垃圾对象的标记过程。

优点:不需要进行对象的移动,并且仅对不存活的对象进行处理,在存活对象比较多的情况下极为高效。

缺点:(1)标记和清除过程的效率都不高。(这种方法需要使用一个空闲列表来记录所有的空闲区域以及大小。对空闲列表的管理会增加分配对象时的工作量。如图4.1所示。)。(2)标记清除后会产生大量不连续的内存碎片。虽然空闲区域的大小是足够的,但却可能没有一个单一区域能够满足这次分配所需的大小,因此本次分配还是会失败(在Java中就是一次OutOfMemoryError)不得不触发另一次垃圾收集动作。如图4.2所示。

算法示意图:

图 4.0 标记—清除算法
图 4.0  标记—清除算法

图4.1 标记—清除算法
图4.1 标记—清除算法

4.2 Compacting算法(Compacting Collector) 或 标记—整理算法

该算法标记的过程与标记—清除算法中的标记过程一样,但对标记后出的垃圾对象的处理情况有所不同,它不是直接对可回收对象进行清理,而是让所有的对象都向一端移动,然后直接清理掉端边界以外的内存。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。

优点:(1)经过整理之后,新对象的分配只需要通过指针碰撞便能完成(Pointer Bumping),相当简单。(2)使用这种方法空闲区域的位置是始终可知的,也不会再有碎片的问题了。

缺点:GC暂停的时间会增长,因为你需要将所有的对象都拷贝到一个新的地方,还得更新它们的引用地址。

算法示意图:
图4.2 标记—整理算法
图4.2 标记—整理算法

图4.3 标记—整理算法
图4.3 标记—整理算法

4.3 Copying算法(Copying Collector)

该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它将内存按容量分为大小相等的两块,每次只使用其中的一块(对象面),当这一块的内存用完了,就将还存活着的对象复制到另外一块内存上面(空闲面),然后再把已使用过的内存空间一次清理掉。

复制算法比较适合于新生代(短生存期的对象),在老年代(长生存期的对象)中,对象存活率比较高,如果执行较多的复制操作,效率将会变低,所以老年代一般会选用其他算法,如标记—整理算法。一种典型的基于Coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象区和空闲区,在对象区与空闲区的切换过程中,程序暂停执行。

优点:(1)标记阶段和复制阶段可以同时进行。(2)每次只对一块内存进行回收,运行高效。(3)只需移动栈顶指针,按顺序分配内存即可,实现简单。(4)内存回收时不用考虑内存碎片的出现(得活动对象所占的内存空间之间没有空闲间隔)。

缺点:需要一块能容纳下所有存活对象的额外的内存空间。因此,可一次性分配的最大内存缩小了一半。

算法示意图:

图4.4 Copying算法
图4.4 Copying算法
图4.4 Copying算法
图4.4 Copying算法

4.4 Adaptive算法(Adaptive Collector)

在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。

5 Java的堆内存(Java Heap Memory)

Java的堆内存基于Generation算法(Generational Collector)划分为新生代、年老代和持久代。新生代又被进一步划分为Eden和Survivor区,最后Survivor由FromSpace(Survivor0)和ToSpace(Survivor1)组成。所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制。

分代收集,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,可以将不同生命周期的对象分代,不同的代采取不同的回收算法(4.1-4.3)进行垃圾回收(GC),以便提高回收效率。

堆内存分区示意图:

图5.0 Java Heap Memory
在这里插入图片描述

图5.1 Java Heap Memory
在这里插入图片描述

Java的内存空间除了堆内存还有其他部分:

1)栈

每个线程执行每个方法的时候都会在栈中申请一个栈帧,每个栈帧包括局部变量区和操作数栈,用于存放此次方法调用过程中的临时变量、参数和中间结果。

2)本地方法栈

用于支持native方法的执行,存储了每个native方法调用的状态。

3)方法区

存放了要加载的类信息、静态变量、final类型的常量、属性和方法信息。JVM用持久代(PermanetGeneration)来存放方法区,可通过-XX:PermSize和-XX:MaxPermSize来指定最小值和最大值。

详细可以参考:Java内存区域和内存溢出。

5.1堆内存分配区域:

1.年轻代(Young Generation)

几乎所有新生成的对象首先都是放在年轻代的。新生代内存按照8:1:1的比例分为一个Eden区和两个Survivor(Survivor0,Survivor1)区。大部分对象在Eden区中生成。当新对象生成,Eden Space申请失败(因为空间不足等),则会发起一次GC(Scavenge GC)。回收时先将Eden区存活对象复制到一个Survivor0区,然后清空Eden区,当这个Survivor0区也存放满了时,则将Eden区和Survivor0区存活对象复制到另一个Survivor1区,然后清空Eden和这个Survivor0区,此时Survivor0区是空的,然后将Survivor0区和Survivor1区交换,即保持Survivor1区为空, 如此往复。当Survivor1区不足以存放 Eden和Survivor0的存活对象时,就将存活对象直接存放到老年代。当对象在Survivor区躲过一次GC的话,其对象年龄便会加1,默认情况下,如果对象年龄达到15岁,就会移动到老年代中。若是老年代也满了就会触发一次Full GC,也就是新生代、老年代都进行回收。新生代大小可以由-Xmn来控制,也可以用-XX:SurvivorRatio来控制Eden和Survivor的比例。

2.年老代(Old Generation)

在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。内存比新生代也大很多(大概比例是1:2),当老年代内存满时触发Major GC即Full GC,Full GC发生频率比较低,老年代对象存活时间比较长,存活率标记高。一般来说,大对象会被直接分配到老年代。所谓的大对象是指需要大量连续存储空间的对象,最常见的一种大对象就是大数组。比如:

byte[] data = new byte[410241024]

这种一般会直接在老年代分配存储空间。

当然分配的规则并不是百分之百固定的,这要取决于当前使用的是哪种垃圾收集器组合和JVM的相关参数。

3.持久代(Permanent Generation)

用于存放静态文件(class类、方法)和常量等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate 等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。对永久代的回收主要回收两部分内容:废弃常量和无用的类。

永久代空间在Java SE8特性中已经被移除。取而代之的是元空间(MetaSpace)。因此不会再出现“java.lang.OutOfMemoryError: PermGen error”错误。

5.2 堆内存分配策略明确以下三点:

(1)对象优先在Eden分配。

(2)大对象直接进入老年代。

(3)长期存活的对象将进入老年代。

5.3 对垃圾回收机制说明以下三点:

新生代GC(Minor GC/Scavenge GC): 发生在新生代的垃圾收集动作。因为Java对象大多都具有朝生夕灭的特性,因此Minor GC非常频繁(不一定等Eden区满了才触发),一般回收速度也比较快。在新生代中,每次垃圾收集时都会发现有大量对象死去,只有少量存活,因此可选用复制算法来完成收集。

老年代GC(Major GC/Full GC): 发生在老年代的垃圾回收动作。Major GC,经常会伴随至少一次Minor GC。由于老年代中的对象生命周期比较长,因此Major GC并不频繁,一般都是等待老年代满了后才进行Full GC,而且其速度一般会比Minor GC慢10倍以上。另外,如果分配了Direct Memory,在老年代中进行Full GC时,会顺便清理掉Direct Memory中的废弃对象。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用标记—清除算法或标记—整理算法来进行回收。

新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC。当连续分配对象时,对象会逐渐从Eden到Survivor,最后到老年代。

用Java VisualVM来查看,能明显观察到新生代满了后,会把对象转移到旧生代,然后清空继续装载,当老年代也满了后,就会报outofmemory的异常,如下图所示:

图5.2 垃圾回收分析
在这里插入图片描述
如何使用Java VisualVM 进行垃圾回收的监视和分析请参考:垃圾回收的监视和分析。

最后

以上就是欣喜路灯为你收集整理的JAVA的GC操作理解-01的全部内容,希望文章能够帮你解决JAVA的GC操作理解-01所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部