我是靠谱客的博主 外向樱桃,最近开发中收集的这篇文章主要介绍离散信号(五) | 离散周期信号的频谱 + 混叠与泄露,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

(三)离散周期信号的频谱

对于一个离散时间周期信号 x ( n ) x(n) x(n),可以通过IDFS从它的周期性离散频谱 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)求得原始序列 x ( n ) x(n) x(n),它们是一一对应的关系。也就是说,用有限项的复指数序列来表示周期序列 x ( n ) x(n) x(n)时,不同的 x ( n ) x(n) x(n)反映在具有不同的复振幅 X ( k Ω 0 ) X(kOmega_0) X(kΩ0),所以 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)完整地描述了 x ( n ) x(n) x(n)。由于它是数字频率的函数,所以把离散时间傅里叶级数的系数 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)的表示式(3)称为周期序列在频域的分析。如果 x ( n ) x(n) x(n)是从连续周期信号 x ( t ) x(t) x(t)采样得来,那么 x ( n ) x(n) x(n)的频谱 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)是否等效于 x ( t ) x(t) x(t)的频谱 X ( k w 0 ) X(kw_0) X(kw0)

通过以上分析,可以得出以下结论:

1)离散时间周期信号的频谱 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)是具有谐波性的周期序列,而连续时间周期信号的频谱 X ( k w 0 ) X(kw_0) X(kw0)是具有谐波性的非周期序列。 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)可以看作是 X ( k w 0 ) X(kw_0) X(kw0)的近似式,近似程度与采样周期T的选取有关。

2)在满足采样定理条件下,从一个连续时间、频带有限的周期信号得到的周期序列,其频谱在 ∣ Ω ∣ < π |Omega|<pi Ω<π ∣ f ∣ < ( f s / 2 ) |f|<(f_s/2) f<(fs/2)范围内等于原始信号的离散频谱。因此可以利用数值计算的方法,方便地截取一个周期的样点 x ( n ) x(n) x(n),并按式(4)准确地求出连续周期信号的各谐波分量 X ( k w 0 ) X(kw_0) X(kw0)

3)在不满足采样定理条件下,由于 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)出现频率混叠,这时就不能用 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)准确地表示 X ( k w 0 ) X(kw_0) X(kw0)。但在误差允许的前提下,可以用一个周期的 X ( k Ω 0 ) X(kOmega_0) X(kΩ0)近似地表示 X ( k w 0 ) X(kw_0) X(kw0),为了减小近似误差,应尽可能地提高采样频率。

(四)混叠与泄露

  1. 混叠

从时域采样定理知道,当采样频率 w s < 2 w m w_s<2w_m ws<2wm情况下,由于出现频率混叠现象而无法恢复原信号频谱,因而人们不能从时域样点准确地重建原连续信号。同理,在频域的采样间隔 w 0 > π t m w_0>frac{pi}{t_m} w0>tmπ情况下,由于出现信号波形混叠而无法恢复原频谱所对应的信号,因而人们不能从频域样点重建原连续频谱。对于周期信号而言,混叠所造成的影响与上述的结论一样,只是这时的频谱是离散的而且具有谐波性。

根据离散傅里叶级数是一个有限项级数这一特点,从理论上阐明了离散时间周期信号的频谱是一个周期性且只具有有限数字频率分量的离散频谱。因此对那些具有无限频谱分量的连续时间周期信号(如矩形、三角形等脉冲串),必然无法准确地从有限样点求得原始周期信号的频谱,而只能通过恰当地提高采样率,增加样点数,来减小混叠对频谱分析所造成的影响。

  1. 泄露

离散时间周期信号除了因采样频率低于采样定理要求,使频谱分析出现混叠误差以外,还会由于截取波形的时间长度不恰当造成泄露误差。这种情况在实际中往往是由于事先不知道信号的确切周期所致。又称为频谱泄露或功率泄露。可能会导致出现频谱混叠现象。由此可见,泄露与混叠是两种不同的现象,为了减小泄露误差, x ( n ) x(n) x(n)必须取自一个基本周期或基本周期的整倍数为宜。若待分析的周期信号事先不知道其确切的周期,则可截取较长时间长度的样本进行分析。当然,必须在采样频率满足采样定理的条件下进行,否则混叠与泄露同时存在,给频谱分析造成更大的困难。

最后

以上就是外向樱桃为你收集整理的离散信号(五) | 离散周期信号的频谱 + 混叠与泄露的全部内容,希望文章能够帮你解决离散信号(五) | 离散周期信号的频谱 + 混叠与泄露所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部