概述
通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解!
一、一些关键概念的引入
1、离散傅里叶变换(DFT)
离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。但是它的致命缺点是:计算量太大,时间复杂度太高,当采样点数太高的时候,计算缓慢,由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。
2、快速傅里叶变换(FFT)
计算量更小的离散傅里叶的一种实现方法。详细细节这里不做描述。
3、采样频率以及采样定理
采样频率:采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。
采样定理:所谓采样定理 ,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论。采样定理指出,如果信号是带限的,并且采样频率高于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。
定理的具体表述为:在进行模拟/数字信号的转换过程中,当采样频率fs大于信号中最高频率fmax的2倍时,即
fs>2*fmax
采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的2.56~4倍;采样定理又称奈奎斯特定理
最后
以上就是发嗲河马为你收集整理的快速傅里叶变换python_傅里叶变换通俗解释及快速傅里叶变换的python实现的全部内容,希望文章能够帮你解决快速傅里叶变换python_傅里叶变换通俗解释及快速傅里叶变换的python实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复