在实际项目中,需要存储大于等于三维的矩阵,而平常中我们使用Eigen::MatrixXd二维数据,这里我们使用Eigen::Tensor来定义
1.Using the Tensor module
复制代码
1
2#include <unsupported/Eigen/CXX11/Tensor>
2.定义矩阵
2.一般矩阵
官方文档
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18// 定义一个2x3x4大小的矩阵 Eigen::Tensor<float, 3> a(2, 3, 4); // 初始化为0 a.setZero(); // 访问元素 a(0, 1, 0) = 12.0f; for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { for (int k = 0; k < 4; k++) { std::cout << a(i, j, k) << " "; } std::cout << std::endl; } std::cout << std::endl << std::endl; } // 输出维度 std::cout<<a.dimension(0)<<" "<<a.dimension(1)<<" "<<a.dimension(2)<<std::endl;
上面输出结果
复制代码
1
2
3
4
5
6
7
8
9
100 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4
2.固定大小矩阵TensorFixedSize
参考官方解释
复制代码
1
2The fixed sized equivalent of Eigen::Tensor<float, 3> t(3, 5, 7); is Eigen::TensorFixedSize<float, Size<3,5,7>> t;
这里我们定义
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14// 固定 大小的Size 2x3x4 Eigen::TensorFixedSize<float, Eigen::Sizes<2, 3, 4>> b; // 每个元素都设置固定值 b.setConstant(3.f); for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { for (int k = 0; k < 4; k++) { std::cout << b(i, j, k) << " "; } std::cout << std::endl; } std::cout << std::endl << std::endl; }
结果如下
复制代码
1
2
3
4
5
6
7
83 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3.常用函数API
参考从零开始编写深度学习库(四)Eigen::Tensor学习使用及代码重构
1.维度
复制代码
1
2
3
4Eigen::Tensor<float, 2> a(3, 4); std::cout << "Dims " << a.NumDimensions; //=> Dims 2
复制代码
1
2
3
4
5Eigen::Tensor<float, 2> a(3, 4); int dim1 = a.dimension(1); std::cout << "Dim 1: " << dim1; //=> Dim 1: 4
2.形状
复制代码
1
2
3
4
5
6Eigen::Tensor<float, 2> a(3, 4); const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions(); std::cout << "Dim size: " << d.size << ", dim 0: " << d[0] << ", dim 1: " << d[1]; //=> Dim size: 2, dim 0: 3, dim 1: 4
3.矩阵元素个数
复制代码
1
2
3
4Eigen::Tensor<float, 2> a(3, 4); std::cout << "Size: " << a.size(); //=> Size: 12
4.初始化
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44/// 1. // setConstant(const Scalar& val),用于把一个矩阵的所有元素设置成一个指定的常数。 Eigen::Tensor<string, 2> a(2, 3); a.setConstant("yolo"); std::cout << "String tensor: " << endl << a << endl << endl; //=> // String tensor: // yolo yolo yolo // yolo yolo yolo /// 2. // setZero() 全部置零 a.setZero(); /// 3. // setRandom() 随机初始化 a.setRandom(); std::cout << "Random: " << endl << a << endl << endl; //=> //Random: // 0.680375 0.59688 -0.329554 0.10794 // -0.211234 0.823295 0.536459 -0.0452059 // 0.566198 -0.604897 -0.444451 0.257742 /// 4. // setValues({..initializer_list}) 从列表、数据初始化 Eigen::Tensor<float, 2> a(2, 3); a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}}); std::cout << "a" << endl << a << endl << endl; //=> // a // 0 1 2 // 3 4 5 //如果给定的数组数据,少于矩阵元素的个数,那么后面不足的元素其值不变: Eigen::Tensor<int, 2> a(2, 3); a.setConstant(1000); a.setValues({{10, 20, 30}}); std::cout << "a" << endl << a << endl << endl; //=> // a // 10 20 30 // 1000 1000 1000
4.运算
参考Eigen Tensor详解【二】
4.1 一元运算
复制代码
1
2
3
4
5
6
7
8
9
10
11<Operation> operator-() 求相反数 <Operation> sqrt() 平方根 <Operation> rsqrt() 逆平方根 <Operation> square() 平方 <Operation> inverse()求逆 <Operation> exp()指数 <Operation> log() log运算 <Operation> abs() 绝对值 <Operation> pow(Scalar exponent) <Operation> operator * (Scalar scale) 乘以某个值
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17void testUnary() { Eigen::Tensor<int, 2> a(2, 3); a.setValues({ {0, 1, 8}, {27, 64, 125} }); Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0); Eigen::Tensor<double, 2> sqrt = a.cast<double>().sqrt(); Eigen::Tensor<double, 2> rsqrt = a.cast<double>().rsqrt(); Eigen::Tensor<double, 2> square = a.cast<double>().square(); Eigen::Tensor<double, 2> inverse = a.cast<double>().inverse(); Eigen::Tensor<double, 2> exp = a.cast<double>().exp(); Eigen::Tensor<double, 2> log = a.cast<double>().log(); Eigen::Tensor<double, 2> abs = a.cast<double>().abs(); Eigen::Tensor<int, 2> multiply = a * 2; std::cout << "a" << std::endl << a << std::endl <<std:: endl; }
4.2 二元运算
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16<Operation> operator+(const OtherDerived& other) <Operation> operator-(const OtherDerived& other) <Operation> operator*(const OtherDerived& other) <Operation> operator/(const OtherDerived& other) <Operation> cwiseMax(const OtherDerived& other) //返回与原tensor同类型,同尺寸的tensor,且以两个原tensor的最大值填充 <Operation> cwiseMin(const OtherDerived& other) //返回与原tensor同类型,同尺寸的tensor,且以两个原tensor的最小值填充 operator&&(const OtherDerived& other) operator||(const OtherDerived& other) operator<(const OtherDerived& other) operator<=(const OtherDerived& other) operator>(const OtherDerived& other) operator>=(const OtherDerived& other) operator==(const OtherDerived& other) operator!=(const OtherDerived& other)
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19void testBinary() { Eigen::Tensor<int, 2> a(2, 3); a.setValues({ {0, 1, 8}, {27, 64, 125} }); Eigen::Tensor<int, 2> b = a * 3; std::cout << "a" << std::endl << a << std::endl << std::endl; std::cout << "b" << std::endl << b << std::endl << std::endl; std::cout << "a+b" << std::endl << a + b << std::endl << std::endl; std::cout << "a-b" << std::endl << a - b << std::endl << std::endl; std::cout << "a*b" << std::endl << a * b << std::endl << std::endl; std::cout << "a.cwiseMax(b)" << std::endl <<a.cwiseMax(b) << std::endl << std::endl; std::cout << "b.cwiseMax(a)" << std::endl << b.cwiseMax(a) << std::endl << std::endl; std::cout << "a.cwiseMin(b)" << std::endl << a.cwiseMin(b) << std::endl << std::endl; std::cout << "b.cwiseMin(a)" << std::endl << b.cwiseMin(a) << std::endl << std::endl; }
4.3 三元运算和降维运算
看参考链接Eigen Tensor详解【二】
4.其他方式
参考Eigen构造使用三维矩阵
如果定义多维数据也可以使用Matrix模板来自定义,
复制代码
1
2Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14Eigen::Matrix<Eigen::MatrixXd,1,1> a; Eigen::Matrix<Eigen::Matrix<double,1,5>,1,1> a; Eigen::Matrix<Eigen::MatrixXd, 1, 1> a;//声明a,一个1*1矩阵 Eigen::MatrixXd b; //声明b b.setZero(1, 5); //对b初始化 b << 1, 2, 3, 4, 5;//对b赋值 a(0, 0) = b;//对a(0,0)赋值 std::cout << "a(0,0): " << a(0, 0) << std::endl;//输出a(0,0) std::cout << "b: " << b << std::endl;//输出b int row = a(0, 0).rows();//row为a(0,0)处矩阵的行维数 int col = a(0, 0).cols();//col为a(0,0)处矩阵的列维数 std::cout << "row: " << row << " col: " << col << std::endl;//输出row和col值
参考
https://blog.csdn.net/hjimce/article/details/71710893
https://blog.csdn.net/fengshengwei3/article/details/103591178
http://eigen.tuxfamily.org/index.php?title=Tensor_support#Using_the_Tensor_module
https://eigen.tuxfamily.org/dox/unsupported/classEigen_1_1TensorFixedSize.html
https://zhuanlan.zhihu.com/p/148019818
最后
以上就是直率发带最近收集整理的关于Eigen::Tensor使用,定义高维矩阵的全部内容,更多相关Eigen内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复