概述
利用正交变换判断二次曲面类型
-
正交变换是欧式空间保持向量内积不变的线性变换。不仅保持向量的长度不变,而且还保持向量
的夹角不变。二维或三维空间中的旋转变换、关于某一条直线或平面的对称变换都是正交变换.投影变换、平移变换不是正交变换. -
正交变它从实内积空间 V V V 映射到 V V V自 身,保持变换前后内积不变.它应用在几何学上就是保持变换前后图形的不变性,这是正交变换的优势,从而达到了判断二次曲面类型、辨明二次曲面形状的目的.
任意一个实二次型
f ( x 1 , x 2 , ⋯ x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j = X T A X , ( a i j = a j i ) fleft(x_{1}, x_{2}, cdots x_{n}right)=sum_{i=1}^{n} sum_{j=1}^{n} a_{i j} x_{i} x_{j}=X^{T} A X,left(a_{i j}=a_{j i}right) f(x1,x2,⋯xn)=i=1∑nj=1∑naijxixj=XTAX,(aij=aji)
都可以经过正交的线性替换变成平方和 λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 lambda_{1} y_{1}^{2}+lambda_{2} y_{2}^{2}+cdots+lambda_{n} y_{n}^{2} λ1y12+λ2y22+⋯+λnyn2 ,其中 λ i ( i = 1 , 2 , … , n ) λ_i( i = 1,2,…,n) λi(i=1,2,…,n) 就是矩阵 A A A的特征多项式全部的根.(高代第八,九章)
前置结论:
-
Q1. 方程
x 1 2 − 2 x 2 2 − 2 x 3 2 − 4 x 1 x 2 + 4 x 1 x 3 + 8 x 2 x 3 = 1 x_{1}^{2}-2 x_{2}^{2}-2 x_{3}^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}+8 x_{2} x_{3}=1 x12−2x22−2x32−4x1x2+4x1x3+8x2x3=1
表示何种二次曲面?
解: 首先利用正交的线性替换将实二次型
f ( x 1 , x 2 , x 3 ) = x 1 2 − 2 x 2 2 − 2 x 3 2 − 4 x 1 x 2 + 4 x 1 x 3 + 8 x 2 x 3 fleft(x_{1}, x_{2}, x_{3}right)=x_{1}^{2}-2 x_{2}^{2}-2 x_{3}^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}+8 x_{2} x_{3} f(x1,x2,x3)=x12−2x22−2x32−4x1x2+4x1x3+8x2x3
化为标准形
A = ( 1 − 2 2 − 2 − 2 4 2 4 − 2 ) , X = ( x 1 x 2 x 3 ) A=left(begin{array}{ccc} 1 & -2 & 2 \ -2 & -2 & 4 \ 2 & 4 & -2 end{array}right), X=left(begin{array}{l} x_{1} \ x_{2} \ x_{3} end{array}right) A= 1−22−2−2424−2 ,X= x1x2x3
A A A 的特征多项式为
f ( λ ) = ∣ λ I − A ∣ = ∣ λ − 1 2 − 2 2 λ + 2 − 4 − 2 − 4 λ + 2 ∣ = ( λ + 7 ) ( λ − 2 ) 2 , f(lambda)=|lambda I-A|=left|begin{array}{ccc} lambda-1 & 2 & -2 \ 2 & lambda+2 & -4 \ -2 & -4 & lambda+2 end{array}right|=(lambda+7)(lambda-2)^{2}, f(λ)=∣λI−A∣= λ−12−22λ+2−4−2−4λ+2 =(λ+7)(λ−2)2,
A
A
A 的特征值为
λ
1
=
λ
2
=
2
,
λ
3
=
−
7.
lambda_{1}=lambda_{2}=2, lambda_{3}=-7 .
λ1=λ2=2,λ3=−7.
可求得对应的
λ
1
=
λ
2
=
2
lambda_{1}=lambda_{2}=2
λ1=λ2=2 特征向量分别为
p
1
=
(
−
2
,
1
,
0
)
T
,
p
2
=
(
2
,
0
,
1
)
T
p_{1}=(-2,1,0) ^{T}, p_{2}=(2,0,1)^{T}
p1=(−2,1,0)T,p2=(2,0,1)T, 将其正交化
α 1 = p 1 = ( − 2 , 1 , 0 ) T , α 2 = p 2 − ( p 1 , α 1 ) ( α 1 , α 1 ) α 1 = ( 2 3 , 4 5 , 1 ) T , alpha_{1}=p_{1}=(-2,1,0) ^T, alpha_{2}=p_{2}-frac{left(p_{1}, alpha_{1}right)}{left(alpha_{1}, alpha_{1}right)} alpha_{1}=left(frac{2}{3}, frac{4}{5}, 1right)^{T} text { , } α1=p1=(−2,1,0)T,α2=p2−(α1,α1)(p1,α1)α1=(32,54,1)T ,
再单位化得
q 1 = ( − 2 5 , 1 5 , 0 ) T , q 2 = ( 2 3 5 , 4 3 5 , 5 3 5 ) T , q_{1}=left(-frac{2}{sqrt{5}}, frac{1}{sqrt{5}}, 0right)^{T}, q_{2}=left(frac{2}{3 sqrt{5}}, frac{4}{3 sqrt{5}}, frac{5}{3 sqrt{5}}right)^{T}, q1=(−52,51,0)T,q2=(352,354,355)T,
又对应 λ 3 = − 7 lambda_{3}=-7 λ3=−7 的特征向量为 p 3 = ( − 1 , − 2 , 2 ) T p_{3}=(-1,-2,2)^{T} p3=(−1,−2,2)T , 单位化得 q 3 = ( − 1 3 , − 2 3 , 2 3 ) T q_{3}=left(-frac{1}{3},-frac{2}{3}, frac{2}{3}right)^T q3=(−31,−32,32)T , 故正交变换
( x 1 x 2 x 3 ) = ( − 2 5 2 3 5 − 1 3 1 5 4 3 5 − 2 3 0 5 3 5 2 3 ) ( y 1 y 2 y 3 ) left(begin{array}{l} x_{1} \ x_{2} \ x_{3} end{array}right)=left(begin{array}{ccc} frac{-2}{sqrt{5}} & frac{2}{3 sqrt{5}} & -frac{1}{3} \ frac{1}{sqrt{5}} & frac{4}{3 sqrt{5}} & -frac{2}{3} \ 0 & frac{5}{3 sqrt{5}} & frac{2}{3} end{array}right)left(begin{array}{l} y_{1} \ y_{2} \ y_{3} end{array}right) x1x2x3 = 5−2510352354355−31−3232 y1y2y3
将实二次型 f ( x 1 , x 2 , x 3 ) fleft(x_{1}, x_{2}, x_{3}right) f(x1,x2,x3) 化为标准形
f = 2 y 1 2 + 2 y 2 2 − 7 y 3 2 , f=2 y_{1}^{2}+2 y_{2}^{2}-7 y_{3}^{2}, f=2y12+2y22−7y32,
可知方程 f ( x 1 , x 2 , x 3 ) = x 1 2 − 2 x 2 2 − 2 x 3 2 − 4 x 1 x 2 + 4 x 1 x 3 + 8 x 2 x 3 = 1 fleft(x_{1}, x_{2}, x_{3}right)=x_{1}^{2}-2 x_{2}^{2}-2 x_{3}^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}+8 x_{2} x_{3}=1 f(x1,x2,x3)=x12−2x22−2x32−4x1x2+4x1x3+8x2x3=1 表示的曲面为单叶双曲面.
- Q2.
判断二次曲面 2 x 2 + 2 y 2 + 3 z 2 + 4 x y + 2 x z + 2 y z − 4 z + 6 y − 2 z + 3 = 0 2 x^{2}+2 y^{2}+3 z^{2}+4 x y+2 x z+2 y z-4 z+6 y-2 z+3=0 2x2+2y2+3z2+4xy+2xz+2yz−4z+6y−2z+3=0 的形状.
分析: 可先通过正交变换再通过平移变换, 将二次曲面方程化成标准形式的方程.
解:
A = ( 2 2 1 2 2 1 1 1 3 ) , B = ( − 4 6 − 2 ) , X = ( x y z ) A=left(begin{array}{lll} 2 & 2 & 1 \ 2 & 2 & 1 \ 1 & 1 & 3 end{array}right), B=left(begin{array}{c} -4 \ 6 \ -2 end{array}right), X=left(begin{array}{l} x \ y \ z end{array}right) A= 221221113 ,B= −46−2 ,X= xyz
则二次曲面方程为
X
T
A
X
+
B
T
X
+
3
=
0.
X^{T} A X+B^{T} X+3=0 .
XTAX+BTX+3=0.
A
A
A 的特征值为
λ
=
2
,
5
,
0
lambda=2,5,0
λ=2,5,0, 对应的单位特征向量为
(
1
6
1
6
−
2
6
)
,
(
1
3
1
3
1
3
)
,
(
−
1
2
1
2
0
)
,
left(begin{array}{c} frac{1}{sqrt{6}} \ frac{1}{sqrt{6}} \ frac{-2}{sqrt{6}} end{array}right),left(begin{array}{c} frac{1}{sqrt{3}} \ frac{1}{sqrt{3}} \ frac{1}{sqrt{3}} end{array}right),left(begin{array}{c} frac{-1}{sqrt{2}} \ frac{1}{sqrt{2}} \ 0 end{array}right),
61616−2
,
313131
,
2−1210
,
则经正交变换
X
=
C
Y
X=CY
X=CY , 即
(
x
y
z
)
=
(
1
6
1
3
−
1
2
1
6
1
3
1
2
−
2
6
1
3
0
)
Y
,
left(begin{array}{l} x \ y \ z end{array}right)=left(begin{array}{ccc} frac{1}{sqrt{6}} & frac{1}{sqrt{3}} & frac{-1}{sqrt{2}} \ frac{1}{sqrt{6}} & frac{1}{sqrt{3}} & frac{1}{sqrt{2}} \ frac{-2}{sqrt{6}} & frac{1}{sqrt{3}} & 0 end{array}right) Y,
xyz
=
61616−23131312−1210
Y,
二次曲面方程化为
Y T ( C T A C ) Y + B C Y + 3 = 0 , Y^{T} (C^{T} A C) Y+B C Y+3=0, YT(CTAC)Y+BCY+3=0,
即
2 x 2 + 5 y 2 + 6 x ′ + 5 2 z ′ + 3 = 0 , 2 x^{2}+5 y^{2}+sqrt{6} x^{prime}+5 sqrt{2} z^{prime}+3=0, 2x2+5y2+6x′+52z′+3=0,
配方,得
2
(
x
′
+
6
4
)
2
+
5
y
2
=
−
5
2
(
z
′
+
9
2
40
)
,
2left(x^{prime}+frac{sqrt{6}}{4}right)^{2}+5 y^{2}=-5 sqrt{2}left(z^{prime}+frac{9 sqrt{2}}{40}right),
2(x′+46)2+5y2=−52(z′+4092),
再经平移变换
{ x ′ ′ = x ′ + 6 4 y ′ ′ = y ′ z ′ ′ = z ′ + 9 2 40 left{begin{array}{c} x^{prime prime}=x^{prime}+frac{sqrt{6}}{4} \ y^{prime prime}=y^{prime} \ z^{prime prime}=z^{prime}+frac{9 sqrt{2}}{40} end{array}right. ⎩ ⎨ ⎧x′′=x′+46y′′=y′z′′=z′+4092
二次曲面方程化为 2 x ′ ′ 2 + 5 y ′ ′ 2 = − 5 2 z ′ ′ 2 x^{prime prime 2}+5 y^{prime prime 2}=-5 sqrt{2} z^{prime prime} 2x′′2+5y′′2=−52z′′ , 是椭圆抛物面.
最后
以上就是高大世界为你收集整理的利用正交变换判断二次曲面类型利用正交变换判断二次曲面类型的全部内容,希望文章能够帮你解决利用正交变换判断二次曲面类型利用正交变换判断二次曲面类型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复