我是靠谱客的博主 爱笑吐司,最近开发中收集的这篇文章主要介绍相机姿态估计(五)--DLS,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

论文:A Direct Least-Squares (DLS) Method for PnP

求解过程看着挺吃力的,看懂的还请多多指正。

本文针对PnP问题,采用非线性最小二乘直接计算,主要贡献如下:

1.提出通用的n点(n≥3)姿态(all pose)计算方法,设计了独特的非线性最小二乘代价函数。

2.无初始化要求,性能接近极大似然(MLE)方法的结果

3.非线性最小二乘代价函数不依赖点数变化。

具体过程如下:

1.问题建模

这里的定义,跟其他如AP3P是一样的,就是换了个字符,S是sensor的意思,就是相机坐标系,G还是参考坐标系。z是像素坐标系中测量点的方向向量,后面eta是噪声。C还是旋转矩阵,P是平移向量,下图是PnP问题最轻量化的描述。

整体的PnP非线性最小二乘求解建模如下:

其中代价函数J是均方误差和:

难点在于如何求解J的最小值,通常有给定一个参数的初始猜测值,然后不断迭代如(如GN算法),但这不能保证一定会获得精确值,还有利用KKT条件(SVM中的支持向量的求解算法中有用到)来求非线性系统,但是,这里难点在于位置参数过多(6+n),而本文提出的方法如下:

1.修改LS模型:

先考虑无噪声情况:

其中未知参数有α,C,P,我们重写成矩阵运算形式:

根据上面,计算P和α:

 注意,P和α,都是旋转矩阵C的线性函数:

因此,我们重写式子4:

 这样,我们将未知参数,从6+n减少到了3。

接着,我们采用CGR 参数化旋转矩阵C,使得3个CGR变量成为无约束优化变量。同时满足:

CGR参数化C(s=[s1,s2,s3]^T):

 因此,9式可以表示 为:

由于C(s)导致线性化,因此,继续简化:

式13就是最终化简后的约束条件。

2.修改代价函数

利用13式,我们重新定义代价函数J,来计算CGR的旋转参数s,先增加噪声:

 基于15式,PnP问题,重构为下面无约束的LSM问题:

其中,新的J{}'定义为: 

 注意,这里J{}'是一个4阶多项式,包含如1,s1,s2,s3,...s1^4,s2^4,s3^4等项。

下面介绍作者直接计算多项式最小值的过程:

考虑到目标函数3个位置参数的4阶多项式,因此,优化方程定义为:

为了构造Maculy矩阵,作者对目标函数增加了i=0项,F0= u0 + u1s1 + u2s2+ u3s3,这里u是随机生成的,这样,原始目标函数被扩展为7个单项式组成:

然后 ,作者将参数S集合,划分为4个集合,其中,S3集合包含所有可以被 s3^3整除的项,S2集合包含所有可以被s2^3整除但不能是s3^3,以此类推,S0集合包含所有未划分的剩余项。

之后,扩展多项式Fi为Gi:

假定原始系统的解为p,则所有扩展自F的多项式G,都为0,即F(p) = 0.但是,F0不会是0:

矩阵分解式21:

最终:

 其中:

从式23可以看出,F0(p)是Mf0的一个特征值,对应的特征向量p^α。我们可以直接获得式18的27个解。

因为S0是1,因此将特征向量以第一个项归一化,以此求解出S1,S2,S3。

实际上,这27组解,只有4个是真实局部最优,大多数情况下,n≥6时,我们只能获取一个真实解。之后,根据该解计算代价,如此实现直接计算最优化。

另外,DLS-LM是在上面求解时,采用LM迭代算法,其他与DLS类似。

作者对比了NPL,SDP,EPnP,DLS,DLS-LM等算法,点的分布视角45°*45°,并模拟了高斯噪声。效果如下:

从这里可以看出,NPL,SDP基本不用考虑了。当点数超过6时,DLS与EPnP的差距也不明显了,剩下的可以对比下时间。 

最后

以上就是爱笑吐司为你收集整理的相机姿态估计(五)--DLS的全部内容,希望文章能够帮你解决相机姿态估计(五)--DLS所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(73)

评论列表共有 0 条评论

立即
投稿
返回
顶部