我是靠谱客的博主 寒冷自行车,最近开发中收集的这篇文章主要介绍【图像检测】基于计算机视觉实现椭圆检测附matlab代码,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1 内容介绍

Hough变换在图像处理中占有重要地位,是一种检测曲线的有效方法.但使用传统的Hough变换来检测椭圆具有存储空间大计算时间长的缺点.为此提出了一种新的基于Hough变换的椭圆轮廓检测方法,利用椭圆的斜率特性,降低了Hough参数空间的维度,提高了运算运效率,并能良好地对图像中多个椭圆进行检测.

2 仿真代码

function [ellipses, L, posi] = ellipseDetectionByArcSupportLSs(I, Tac, Tr, specified_polarity)

%input:

% I: input image

% Tac: elliptic angular coverage (completeness degree)

% Tr: ratio of support inliers on an ellipse

%output:

% ellipses: N by 5. (center_x, center_y, a, b, phi)

% reference:

% 1、von Gioi R Grompone, Jeremie Jakubowicz, Jean-

% Michel Morel, and Gregory Randall, “Lsd: a fast line

% segment detector with a false detection control.,” IEEE

% transactions on pattern analysis and machine intelligence,

% vol. 32, no. 4, pp. 722–732, 2010.

    angleCoverage = Tac;%default 165°

    Tmin = Tr;%default 0.6 

    unit_dis_tolerance = 2; %max([2, 0.005 * min([size(I, 1), size(I, 2)])]);%内点距离的容忍差小于max(2,0.5%*minsize)

    normal_tolerance = pi/9; %法线容忍角度20°= pi/9

    t0 = clock;

    if(size(I,3)>1)

        I = rgb2gray(I);

        [candidates, edge, normals, lsimg] = generateEllipseCandidates(I, 2, specified_polarity);%1,sobel; 2,canny

    else

        [candidates, edge, normals, lsimg] = generateEllipseCandidates(I, 2, specified_polarity);%1,sobel; 2,canny

    end

%    figure; imshow(edge);

%     return;

%    subplot(1,2,1);imshow(edge);%show edge image

%    subplot(1,2,2);imshow(lsimg);%show LS image

    t1 = clock;

    disp(['the time of generating ellipse candidates:',num2str(etime(t1,t0))]);

    candidates = candidates';%ellipse candidates matrix Transposition

    if(candidates(1) == 0)%表示没有找到候选圆

        candidates =  zeros(0, 5);

    end

    posi = candidates;

    normals    = normals';%norams matrix transposition

    [y, x]=find(edge);%找到非0元素的行(y)、列(x)的索引

%     ellipses = [];L=[];

%     return;

    [mylabels,labels, ellipses] = ellipseDetection(candidates ,[x, y], normals, unit_dis_tolerance, normal_tolerance, Tmin, angleCoverage, I);%后四个参数 0.5% 20° 0.6 180° 

    disp('-----------------------------------------------------------');

    disp(['running time:',num2str(etime(clock,t0)),'s']);

%     labels

%     size(labels)

%     size(y)

    warning('on', 'all');

     L = zeros(size(I, 1), size(I, 2));%创建与输入图像I一样大小的0矩阵L

    L(sub2ind(size(L), y, x)) = mylabels;%labels,长度等于edge_pixel_n x 1,如果第i个边缘点用于识别了第j个圆,则该行标记为j,否则为0。大小 edge_pixel_n x 1;现在转化存到图像中,在图像中标记

%     figure;imshow(L==2);%LLL

%     imwrite((L==2),'D:Graduate Design画图edge_result.jpg');

end

%% ================================================================================================================================

%函数1

%输入

%candidates: ncandidates x 5

%points:     边缘像素点的坐标(x,y),nx2,n为总共的边缘点数

%lineLabels: 对相应的坐标(xi,yi)标记,对应靠近相应的线段,nx1,未标记则为0

%lines:      线段参数,-B,A,xmid,ymid,其中(xmid,ymid)对应相应的线段中点,mx4,m为总共m条线段

%输出

%labels:    长度等于n x 1,如果第i个边缘点用于识别了第j个圆,则该行标记为j,否则为0。大小 n x 1

%C:   识别出来的对称中心,长半轴,短半轴,和倾角,每一行格式是(x,y,a,b,phi)

function [mylabels,labels, ellipses] = ellipseDetection(candidates, points, normals, distance_tolerance, normal_tolerance, Tmin, angleCoverage, E)

    labels = zeros(size(points, 1), 1);

    mylabels = zeros(size(points, 1), 1);%测试

    ellipses = zeros(0, 5);

  

    %% 对于显著性很大的候选椭圆,且满足极其严格要求,直接检测出来,SE(salient ellipses);同时对~SE按照goodness进行pseudo order

    goodness = zeros(size(candidates, 1), 1);%初始化时为0,当检测到显著椭圆时直接提取,相应位置的goodness(i) = -1标记。

    for i = 1 : size(candidates,1)

        %ellipse circumference is approximate pi * (1.5*sum(ellipseAxes)-sqrt(ellipseAxes(1)*ellipseAxes(2))

        ellipseCenter = candidates(i, 1 : 2);

        ellipseAxes   = candidates(i, 3:4);

        tbins = min( [ 180, floor( pi * (1.5*sum(ellipseAxes)-sqrt(ellipseAxes(1)*ellipseAxes(2)) ) * Tmin ) ] );%选分区

        %ellipse_normals = computePointAngle(candidates(i,:),points);

        %inliers = find( labels == 0 & dRosin_square(candidates(i,:),points) <= 1 );  % +-1个像素内找支持内点

        %加速计算,只挑出椭圆外接矩形内的边缘点(椭圆中的长轴a>b),s_dx存储的是相对points的索引

        s_dx = find( points(:,1) >= (ellipseCenter(1)-ellipseAxes(1)-1) & points(:,1) <= (ellipseCenter(1)+ellipseAxes(1)+1) & points(:,2) >= (ellipseCenter(2)-ellipseAxes(1)-1) & points(:,2) <= (ellipseCenter(2)+ellipseAxes(1)+1));

        inliers = s_dx(dRosin_square(candidates(i,:),points(s_dx,:)) <= 1);

        ellipse_normals = computePointAngle(candidates(i,:),points(inliers,:));

        p_dot_temp = dot(normals(inliers,:), ellipse_normals, 2); %加速后ellipse_normals(inliers,:)改为加速后ellipse_normals

        p_cnt = sum(p_dot_temp>0);%无奈之举,做一次极性统计,当改为C代码时注意拟合圆时内点极性的选取问题

        if(p_cnt > size(inliers,1)*0.5)

            %极性相异,也就是内黑外白    

            %ellipse_polarity = -1;

            inliers = inliers(p_dot_temp>0 & p_dot_temp >= 0.923879532511287 );%cos(pi/8) = 0.923879532511287, 夹角小于22.5°  

        else

            %极性相同,也就是内白外黑 

            %ellipse_polarity = 1;

            inliers = inliers(p_dot_temp<0 & (-p_dot_temp) >= 0.923879532511287 );

        end

        inliers = inliers(takeInliers(points(inliers, :), ellipseCenter, tbins)); 

        support_inliers_ratio = length(inliers)/floor( pi * 

%         size(labels)

%         size(dRosin_square(list(i,:),points) )

%         ppp = (dRosin_square(list(i,:),points) <= 4*distance_tolerance_square)

%           if( i == 11 && angleCoverage == 165)

%          drawEllipses(list(i,:)',E);

%           end

        %此处非常重要,距离应该要比之前的更狭小的范围寻找内点

        %ellipse_normals = computePointAngle(list(i,:),points);

        %inliers = find(labels == 0 & (dRosin_square(list(i,:),points) <= distance_tolerance_square) );  % 2.25 * distance_tolerance_square , 4*distance_tolerance_square.

        %加速计算,只挑出椭圆外接矩形内的边缘点(椭圆中的长轴a>b),i_dx存储的是相对在points中的索引.

        i_dx = find( points(:,1) >= (ellipseCenter(1)-ellipseAxes(1)-distance_tolerance) & points(:,1) <= (ellipseCenter(1)+ellipseAxes(1)+distance_tolerance) & points(:,2) >= (ellipseCenter(2)-ellipseAxes(1)-distance_tolerance) & points(:,2) <= (ellipseCenter(2)+ellipseAxes(1)+distance_tolerance));

        inliers = i_dx(labels(i_dx) == 0 & (dRosin_square(list(i,:),points(i_dx,:)) <= distance_tolerance_square) );

        ellipse_normals = computePointAngle(list(i,:),points(inliers,:));%ellipse_normals长度与inliers长度一致

        

%         if( i == 11 && angleCoverage == 165)

%         testim = zeros(size(E,1),size(E,2));

%         testim(sub2ind(size(E),points(inliers,2),points(inliers,1))) = 1;

%         figure;imshow(testim);

%         end 

        

        p_dot_temp = dot(normals(inliers,:), ellipse_normals, 2);

        p_cnt = sum(p_dot_temp>0);%无奈之举,做一次极性统计,当改为C代码时注意拟合圆时内点极性的选取问题

        if(p_cnt > size(inliers,1)*0.5)

            %极性相异,也就是内黑外白    

            ellipse_polarity = -1;

            inliers = inliers(p_dot_temp>0 & p_dot_temp >= 0.923879532511287 );%cos(pi/8) = 0.923879532511287, 夹角小于22.5°  

        else

            %极性相同,也就是内白外黑 

            ellipse_polarity = 1;

            inliers = inliers(p_dot_temp<0 & (-p_dot_temp) >= 0.923879532511287 );

        end

        

%         if( i == 11 && angleCoverage == 165)

%         testim = zeros(size(E,1),size(E,2));

%         testim(sub2ind(size(E),points(inliers,2),points(inliers,1))) = 1;

%         figure;imshow(testim);

%         end

        

        inliers2 = inliers;

        inliers3 = 0;

        %=================================================================================================================================================================

        %连通域分析,inliers为存的是在边缘点的行下标

%         size(points)

%          size(inliers)

%         size(points(inliers, :))

%         size(takeInliers(points(inliers, :), circleCenter, tbins))

        %连通域分析,得到有效的内点,内点提纯,也就是inliers中进一步产出有效的inliers,个数会减少,大小inlier_n2 x 1。注意注意:inliers中存的是在points中的行下标

        inliers = inliers(takeInliers(points(inliers, :), ellipseCenter, tbins));

        

%         if( i == 11 && angleCoverage == 165)

%         testim = zeros(size(E,1),size(E,2));

%         testim(sub2ind(size(E),points(inliers,2),points(inliers,1))) = 1;

%         figure;imshow(testim);

%         end

         [new_ellipse,new_info] = fitEllipse(points(inliers,1),points(inliers,2));

         

%           if( i == 11 && angleCoverage == 165)

%          drawEllipses(new_ellipse',E);

%           end

%         if angleLoop == 2   %mycode

%         dispimg = zeros(size(E,1),size(E,2),3);

%         dispimg(:,:,1) = E.*255;%边缘提取出来的是0-1图像

%         dispimg(:,:,2) = E.*255;

%         dispimg(:,:,3) = E.*255;

%         for i = 1:length(inliers)

%         dispimg(points(inliers(i),2),points(inliers(i),1),:)=[0 0 255];

%         end

%         dispimg = drawCircle(dispimg,[newa newb],newr);

%         figure;

%         imshow(uint8(dispimg));

%         end

        if (new_info == 1)%如果是用最小二乘法拟合的而得出的结果

            %新对称中心和老对称中心的距离小于4*distance_tolerance, (a,b)的距离也是小于4*distance_tolerance,倾角phi小于0.314159265358979 = 0.1pi = 18°,因为新拟合出来的不能和原来的椭圆中心差很多,

            if ( (((new_ellipse(1) - ellipseCenter(1))^2 + (new_ellipse(2) - ellipseCenter(2))^2 ) <= 16 * distance_tolerance_square) ...

                && (((new_ellipse(3) - ellipseAxes(1))^2 + (new_ellipse(4) - ellipseAxes(2))^2 ) <= 16 * distance_tolerance_square) ...

                && (abs(new_ellipse(5) - ellipsePhi) <= 0.314159265358979) )

                ellipse_normals = computePointAngle(new_ellipse,points);

                %重新做一次找内点,连通性分析的内点提纯,这次的新的内点会用于后面的完整度分析

                %newinliers = find( (labels == 0) & (dRosin_square(new_ellipse,points) <= distance_tolerance_square) ...

                %    & ((dot(normals, ellipse_normals, 2)*(-ellipse_polarity)) >= 0.923879532511287) ); % (2*distance_tolerance)^2, cos(pi/8) = 0.923879532511287, 夹角小于22.5°

                %加速计算,只挑出椭圆外接矩形内的边缘点(椭圆中的长轴a>b),i_dx存储的是相对在points中的索引

                i_dx = find( points(:,1) >= (new_ellipse(1)-new_ellipse(3)-distance_tolerance) & points(:,1) <= (new_ellipse(1)+new_ellipse(3)+distance_tolerance) & points(:,2) >= (new_ellipse(2)-new_ellipse(3)-distance_tolerance) & points(:,2) <= (new_ellipse(2)+new_ellipse(3)+distance_tolerance));

                ellipse_normals = computePointAngle(new_ellipse,points(i_dx,:));%ellipse_normals长度与i_dx长度一致

                newinliers = i_dx(labels(i_dx) == 0 & (dRosin_square(new_ellipse,points(i_dx,:)) <= distance_tolerance_square & ((dot(normals(i_dx,:), ellipse_normals, 2)*(-ellipse_polarity)) >= 0.923879532511287) ) );

                newinliers = newinliers(takeInliers(points(newinliers, :), new_ellipse(1:2), tbins));

                if (length(newinliers) >= length(inliers))

                    %a = newa; b = newb; r = newr; cnd = newcnd;

                    inliers = newinliers;

                    inliers3 = newinliers;%my code,just test

                    %======================================================================

                    %二次拟合

                    %[newa, newb, newr, newcnd] = fitCircle(points(inliers, :));

                    [new_new_ellipse,new_new_info] = fitEllipse(points(inliers,1),points(inliers,2));

                    if(new_new_info == 1)

                       new_ellipse = new_new_ellipse;

                    end

                    %=======================================================================

                end

            end

        else

            new_ellipse = list(i,:);  %candidates

        end

        

        %内点数量大于圆周上的一定比例,Tmin为比例阈值

%         length(inliers)

%         floor( pi * (1.5*sum(new_ellipse(3:4))-sqrt(new_ellipse(3)*new_ellipse(4))) * Tmin )

        if (length(inliers) >= floor( pi * (1.5*sum(new_ellipse(3:4))-sqrt(new_ellipse(3)*new_ellipse(4))) * Tmin ))

            convergence(i, :) = new_ellipse;

            %与之前的圆心和半径参数几乎一致,重复了,因此把这个圆淘汰(排在最开头的和它重复的圆不一定会被淘汰)

            if (any( (sqrt(sum((convergence(1 : i - 1, 1 : 2) - repmat(new_ellipse(1:2), i - 1, 1)) .^ 2, 2)) <= distance_tolerance) ...

                & (sqrt(sum((convergence(1 : i - 1, 3 : 4) - repmat(new_ellipse(3:4), i - 1, 1)) .^ 2, 2)) <= distance_tolerance) ...

                & (abs(convergence(1 : i - 1, 5) - repmat(new_ellipse(5), i - 1, 1)) <= 0.314159265358979) ))

                validCandidates(i) = false;

            end

            %如果内点在圆周上满足angleCoverage的完整度

            %completeOrNot =  isComplete(points(inliers, :), new_ellipse(1:2), tbins, angleCoverage);

            completeOrNot = calcuCompleteness(points(inliers,:),new_ellipse(1:2),tbins) >= angleCoverage;

            if (new_info == 1 && new_ellipse(3) < maxSemiMajor && new_ellipse(4) < maxSemiMinor && completeOrNot )

                %且满足和其它圆参数大于distance_tolerance,也就是指和其它圆是不同的

                if (all( (sqrt(sum((ellipses(:, 1 : 2) - repmat(new_ellipse(1:2), size(ellipses, 1), 1)) .^ 2, 2)) > distance_tolerance) ...

                   | (sqrt(sum((ellipses(:, 3 : 4) - repmat(new_ellipse(3:4), size(ellipses, 1), 1)) .^ 2, 2)) > distance_tolerance) ...

                   | (abs(ellipses(:, 5) - repmat(new_ellipse(5), size(ellipses, 1), 1)) >= 0.314159265358979 ) )) %0.1 * pi = 0.314159265358979 = 18°

                    %size(inliers)

                    %line_normal = pca(points(inliers, :));%得到2x2的pca变换矩阵,因此第二列便是由内点统计出的梯度

                    %line_normal = line_normal(:, 2)';%取出第二列并且变为1 x 2 的行向量

                    %line_point = mean(points(inliers, :));%内点取平均

                    %防止数据点过于集中

                    %if (sum(abs(dot(points(inliers, :) - repmat(line_point, length(inliers), 1), repmat(line_normal, length(inliers), 1), 2)) <= distance_tolerance & radtodeg(real(acos(abs(dot(normals(inliers, :), repmat(line_normal, length(inliers), 1), 2))))) <= normal_tolerance) / length(inliers) < 0.8)

                         labels(inliers) = size(ellipses, 1) + 1;%标记,这些内点已经用过了,构成了新检测到圆周

                         %==================================================================

                         if(all(inliers3) == 1)

                         mylabels(inliers3) = size(ellipses,1) + 1; %显示拟合出圆时所用的内点  SSS

                         end

                         %==================================================================

                        ellipses = [ellipses; new_ellipse];%将该圆参数加入进去

                        validCandidates(i) = false;%第i个候选圆检测完毕

                        %disp([angleCoverage,i]);

                        %drawEllipses(new_ellipse',E);

                    %end

                end

            end

        else

            validCandidates(i) = false;%其它情况,淘汰该候选圆

        end

        

    end %for

end%fun

%% ================================================================================================================================

%函数4

%圆的最小二乘法拟合(此处可以改用快速圆拟合方法)

%输入:

%points: 联通性分析后的提纯后的内点,设大小为 fpn x 2,格式(xi,yi)

%输出:

%a  :拟合后的圆心横坐标x

%b  :拟合后的圆心纵坐标y

%c  :拟合后的圆心半径r

%cnd :1表示数据代入方程后是奇异的,直接用平均值估计;0表示数据是用最小二乘法拟合的

function [a, b, r, cnd] = fitCircle(points)

%{

    A = [sum(points(:, 1)), sum(points(:, 2)), size(points, 1); sum(points(:, 1) .* points(:, 2)), sum(points(:, 2) .* points(:, 2)), sum(points(:, 2)); sum(points(:, 1) .* points(:, 1)), sum(points(:, 1) .* points(:, 2)), sum(points(:, 1))];

    %用最小二乘法时,A'A正则矩阵如果接近0,则意味着方程组线性,求平均值即可

    if (abs(det(A)) < 1e-9)

        cnd = 1;

        a = mean(points(:, 1));

        b = mean(points(:, 2));

        r = min(max(points) - min(points));

        return;

    end

    cnd = 0;

    B = [-sum(points(:, 1) .* points(:, 1) + points(:, 2) .* points(:, 2)); -sum(points(:, 1) .* points(:, 1) .* points(:, 2) + points(:, 2) .* points(:, 2) .* points(:, 2)); -sum(points(:, 1) .* points(:, 1) .* points(:, 1) + points(:, 1) .* points(:, 2) .* points(:, 2))];

    t = A B;

    a = -0.5 * t(1);

    b = -0.5 * t(2);

    r = sqrt((t(1) .^ 2 + t(2) .^ 2) / 4 - t(3));

 %}

    A = [sum(points(:, 1) .* points(:, 1)),sum(points(:, 1) .* points(:, 2)),sum(points(:, 1)); sum(points(:, 1) .* points(:, 2)),sum(points(:, 2) .* points(:, 2)),sum(points(:, 2)); sum(points(:, 1)),sum(points(:, 2)),size(points, 1)]; 

    %用最小二乘法时,A'A正则矩阵如果接近0,则意味着方程组线性,求平均值即可

    if (abs(det(A)) < 1e-9)

        cnd = 1;

        a = mean(points(:, 1));

        b = mean(points(:, 2));

        r = min(max(points) - min(points));

        return;

    end

    cnd = 0;

    B = [sum(-points(:, 1) .* points(:, 1) .* points(:, 1) - points(:, 1) .* points(:, 2) .* points(:, 2));sum(-points(:, 1) .* points(:, 1) .* points(:, 2) - points(:, 2) .* points(:, 2) .* points(:, 2)); sum(-points(:, 1) .* points(:, 1) - points(:, 2) .* points(:, 2))];

    t = A B;

    a = -0.5 * t(1);

    b = -0.5 * t(2);

    r = sqrt((t(1) .^ 2 + t(2) .^ 2) / 4 - t(3));

end

%% ================================================================================================================================

%函数5

%输入

%x     : 连通性分析后,满足数量2piRT的提纯后的内点(x,y),将参与到完整度分析环节.num x 2

%center: 圆心(x,y)  1 x 2

%tbins :分区总数

%angleCoverage: 需要达到的圆完整度

%输出

%result: true or false,表示该圆完整与不完整

%longest_inliers:

function [result, longest_inliers] = isComplete(x, center, tbins, angleCoverage)

    [theta, ~] = cart2pol(x(:, 1) - center(1), x(:, 2) - center(2));%theta为(-pi,pi)的角度,num x 1

    tmin = -pi; tmax = pi;

    tt = round((theta - tmin) / (tmax - tmin) * tbins + 0.5);%theta的第i个元素落在第j个bin,则tt第i行标记为j,大小num x 1

    tt(tt < 1) = 1; tt(tt > tbins) = tbins;

    h = histc(tt, 1 : tbins);

    longest_run = 0;

    start_idx = 1;

    end_idx = 1;

    while (start_idx <= tbins)

        if (h(start_idx) > 0)%找到bin中vote第一个大于0的

            end_idx = start_idx;

            while (start_idx <= tbins && h(start_idx) > 0)%直到bin第一个小于0的

                start_idx = start_idx + 1;

            end

            inliers = [end_idx, start_idx - 1];%此区间为连通区域

            inliers = find(tt >= inliers(1) & tt <= inliers(2));%在tt中找到落在此区间的内点的索引

            run = max(theta(inliers)) - min(theta(inliers));%角度差

            if (longest_run < run)%此举是为了找到最大的完整的且连通的跨度

                longest_run = run;

                longest_inliers = inliers;

            end

        end

        start_idx = start_idx + 1;

    end

    if (h(1) > 0 && h(tbins) > 0)%如果第一个bin和最后一个bin都大于0,有可能最大连通区域是头尾相连的这种情况

        start_idx = 1;

        while (start_idx < tbins && h(start_idx) > 0)%找到bin中vote第一个大于0的

            start_idx = start_idx + 1;

        end

        end_idx = tbins;%end_idx直接从最尾部开始往回找

        while (end_idx > 1 && end_idx > start_idx && h(end_idx) > 0)

            end_idx = end_idx - 1;

        end

        inliers = [start_idx - 1, end_idx + 1];

        run = max(theta(tt <= inliers(1)) + 2 * pi) - min(theta(tt >= inliers(2)));

        inliers = find(tt <= inliers(1) | tt >= inliers(2));

        if (longest_run < run)

            longest_run = run;

            longest_inliers = inliers;

        end

    end

    %最大的连通的跨度大于了angleCoverage,或者虽然最大连通跨度小于,但完整度足够了

    longest_run_deg = radtodeg(longest_run);

    h_greatthanzero_num = sum(h>0);

    result =  longest_run_deg >= angleCoverage || h_greatthanzero_num * (360 / tbins) >= min([360, 1.2*angleCoverage]);  %1.2 * angleCoverage

end

function [completeness] = calcuCompleteness(x, center, tbins)

    [theta, ~] = cart2pol(x(:, 1) - center(1), x(:, 2) - center(2));%theta为(-pi,pi)的角度,num x 1

    tmin = -pi; tmax = pi;

    tt = round((theta - tmin) / (tmax - tmin) * tbins + 0.5);%theta的第i个元素落在第j个bin,则tt第i行标记为j,大小num x 1

    tt(tt < 1) = 1; tt(tt > tbins) = tbins;

    h = histc(tt, 1 : tbins);

    h_greatthanzero_num = sum(h>0);

    completeness = h_greatthanzero_num*(360 / tbins);

end

%% ================================================================================================================================

%函数6

%连通性分析,对圆周上的内点进行提纯

%输入

%x:椭圆周上的内点(x,y),设为inlier_n x 2

%center:一个椭圆的中心(x,y) 1x2

%tbins: 分区 = min( 180 , pi*(1.5*(a+b)-sqrt(a*b)) ) 

%输出

%idx:为与x一样长的,inlier_n x 1的logical向量,返回有效的满足一定连通长度的内点,对应位置有效则为1,否则为0

function idx = takeInliers(x, center, tbins)

   [theta, ~] = cart2pol(x(:, 1) - center(1), x(:, 2) - center(2));%得到[-pi,pi]的方位角,等价于 theta = atan2(x(:, 2) - center(2) , x(:, 1) - center(1)); 

    tmin = -pi; tmax = pi;

    tt = round((theta - tmin) / (tmax - tmin) * tbins + 0.5);%将内点分区到[1 tbins]

    tt(tt < 1) = 1; tt(tt > tbins) = tbins;

    h = histc(tt, 1 : tbins);%h为直方图[1 tbins]的统计结果

    mark = zeros(tbins, 1);

    compSize = zeros(tbins, 1);

    nComps = 0;

    queue = zeros(tbins, 1);

    du = [-1, 1];

    for i = 1 : tbins

        if (h(i) > 0 && mark(i) == 0)%如果落在第i个分区内的值大于0,且mark(i)为0

            nComps = nComps + 1;

            mark(i) = nComps;%标记第nComps个连通区域

            front = 1; rear = 1;

            queue(front) = i;%将该分区加入队列,并以此开始任务

            while (front <= rear)

                u = queue(front);

                front = front + 1;

                for j = 1 : 2

                    v = u + du(j);

                    if (v == 0)

                        v = tbins;

                    end

                    if (v > tbins)

                        v = 1;

                    end

                    if (mark(v) == 0 && h(v) > 0)

                        rear = rear + 1;

                        queue(rear) = v;

                        mark(v) = nComps;%标记第nComps个连通区域

                    end

                end

            end

            compSize(nComps) = sum(ismember(tt, find(mark == nComps)));%得到构成连通域为nComps的内点数量

        end

    end

    compSize(nComps + 1 : end) = [];

    maxCompSize = max(compSize);

    validComps = find(compSize >= maxCompSize * 0.1 & compSize > 10);%大于等于最大连通长度的0.1倍的连通区域是有效的

    validBins = find(ismember(mark, validComps));%有效的分区

    idx = ismember(tt, validBins);%有效的内点

end

%% compute the points' normals belong to an ellipse, the normals have been already normalized. 

%param: [x0 y0 a b phi].

%points: [xi yi], n x 2

function [ellipse_normals] = computePointAngle(ellipse, points)

%convert [x0 y0 a b phi] to Ax^2+Bxy+Cy^2+Dx+Ey+F = 0

a_square = ellipse(3)^2;

b_square = ellipse(4)^2;

sin_phi = sin(ellipse(5));

cos_phi = cos(ellipse(5)); 

sin_square = sin_phi^2;

cos_square = cos_phi^2;

A = b_square*cos_square+a_square*sin_square;

B = (b_square-a_square)*sin_phi*cos_phi*2;

C = b_square*sin_square+a_square*cos_square;

D = -2*A*ellipse(1)-B*ellipse(2);

E = -2*C*ellipse(2)-B*ellipse(1);

% F = A*ellipse(1)^2+C*ellipse(2)^2+B*ellipse(1)*ellipse(2)-(ellipse(3)*ellipse(4)).^2;

% A = A/F;

% B = B/F;

% C = C/F;

% D = D/F;

% E = E/F;

% F = 1;

%calculate points' normals to ellipse

angles = atan2(C*points(:,2)+B/2*points(:,1)+E/2, A*points(:,1)+B/2*points(:,2)+D/2);

ellipse_normals = [cos(angles),sin(angles)];

end

%% param为[x0 y0 a b Phi],1 x 5 或者 5 x 1

%points为待计算rosin distance的点,每一行为(xi,yi),size是 n x 2

%dmin为输出估计距离的平方.

%调用注意,当a = b时,也就是椭圆退化成圆时,dmin会变成无穷大NAN,不能用此函数

function [dmin]= dRosin_square(param,points)

ae2 = param(3).*param(3);

be2 = param(4).*param(4);

x = points(:,1) - param(1);

y = points(:,2) - param(2);

xp = x*cos(-param(5))-y*sin(-param(5));

yp = x*sin(-param(5))+y*cos(-param(5));

fe2 = ae2-be2;

X = xp.*xp;

Y = yp.*yp;

delta = (X+Y+fe2).^2-4*fe2*X;

A = (X+Y+fe2-sqrt(delta))/2;

ah = sqrt(A);

bh2 = fe2-A;

term = A*be2+ae2*bh2;

xi = ah.*sqrt(ae2*(be2+bh2)./term);

yi = param(4)*sqrt(bh2.*(ae2-A)./term);

d = zeros(size(points,1),4);%n x 4

d(:,1) = (xp-xi).^2+(yp-yi).^2;

d(:,2) = (xp-xi).^2+(yp+yi).^2;

d(:,3) = (xp+xi).^2+(yp-yi).^2;

d(:,4) = (xp+xi).^2+(yp+yi).^2;

dmin = min(d,[],2); %返回距离的平方

%[dmin, ii] = min(d,[],2); %返回距离的平方

% for jj = 1:length(dmin)

%     if(ii(jj) == 1)

%         xi(jj) = xi(jj);

%         yi(jj) = yi(jj);

%     elseif (ii(jj) == 2)

%         xi(jj) = xi(jj);

%         yi(jj) = -yi(jj);

%     elseif (ii(jj) == 3)

%         xi(jj) = -xi(jj);

%         yi(jj) = yi(jj);

%     elseif(ii(jj) == 4)

%          xi(jj) = -xi(jj);

%         yi(jj) = -yi(jj);

%     end

% end

% xi =  xi*cos(param(5))-yi*sin(param(5));

% yi =  xi*sin(param(5))+yi*cos(param(5));

% testim = zeros(300,300);

% testim(sub2ind([300 300],uint16(yi+param(2)),uint16(xi+param(1)))) = 1;

% figure;imshow(uint8(testim).*255);

end

3 运行结果

4 参考文献

[1]张治斌, 刘桂玲, and 程玉华. "基于计算机视觉的图像检测方案设计." 数字技术与应用 3(2012):2.

[2]屈稳太. 基于弦中点Hough变换的椭圆检测方法[J]. 浙江大学学报:工学版, 2005, 39(8):5.​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

 

最后

以上就是寒冷自行车为你收集整理的【图像检测】基于计算机视觉实现椭圆检测附matlab代码的全部内容,希望文章能够帮你解决【图像检测】基于计算机视觉实现椭圆检测附matlab代码所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(71)

评论列表共有 0 条评论

立即
投稿
返回
顶部