概述
决策树模型是机器学习的各种算法模型中比较好理解的一种模型,它的基本原理是通过对一系列问题进行if/else的推导,最终实现相关决策。
下图所示为一个典型的决策树模型——员工离职预测模型的简单演示。该决策树首先判断员工满意度是否小于5,若答案为“是”,则认为该员工会离职,若答案为“否”,则接着判断该员工收入是否小于10000元,若答案为“是”,则认为该员工会离职,若答案为“否”,则认为该员工不会离职。
下面解释决策树模型的几个重要概念:父节点和子节点、根节点和叶子节点。父节点和子节点是相对的,子节点由父节点根据某一规则分裂而来,然后子节点作为新的父节点继续分裂,直至不能分裂为止。根节点则和叶子节点是相对的,根节点是没有父节点的节点,即初始节点,叶子节点则是没有子节点的节点,即最终节点。决策树模型的关键就是如何选择合适的节点进行分裂。在上图中,“满意度<5”是根节点,同时也是父节点,分裂成两个子节点“离职”和“收入<10000元”;子节点“离职”因为不再分裂出子节点,所以又是叶子节点;另一个子节点“收入<10000元”又是其下面两个节点的父节点;“离职”及“不离职”则为叶子节点。在实际应用中,企业会通过已有的数据来分析离职员工都符合何种特
最后
以上就是寂寞狗为你收集整理的决策树模型的全部内容,希望文章能够帮你解决决策树模型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复